Skip to content

Commit

Permalink
[pdq] Constant initialize DCT buffer (#1518)
Browse files Browse the repository at this point in the history
  • Loading branch information
ianwal authored Jan 22, 2024
1 parent e469ada commit 649c1f3
Show file tree
Hide file tree
Showing 3 changed files with 72 additions and 69 deletions.
3 changes: 2 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -18,4 +18,5 @@ pdq/java/bazel-testlogs/
.mypy_cache/
.vscode/
*.d.ts
.idea/
.idea/
venv/
69 changes: 35 additions & 34 deletions pdq/cpp/hashing/pdqhashing.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,6 @@
// Copyright (c) Meta Platforms, Inc. and affiliates.
// ================================================================

#include <mutex>

#include <pdq/cpp/downscaling/downscaling.h>
#include <pdq/cpp/hashing/pdqhashing.h>
#include <pdq/cpp/hashing/torben.h>
Expand All @@ -17,6 +15,7 @@
#define _USE_MATH_DEFINES
#endif

#include <array>
#include <cassert>
#include <chrono>
#include <cmath>
Expand All @@ -27,6 +26,37 @@ namespace facebook {
namespace pdq {
namespace hashing {

namespace {

// ----------------------------------------------------------------
// Christoph Zauner 'Implementation and Benchmarking of Perceptual
// Image Hash Functions' 2010
//
// See comments on dct64To16. Input is (0..63)x(0..63); output is
// (1..16)x(1..16) with the latter indexed as (0..15)x(0..15).
//
// * numRows is 16.
// * numCols is 64.
// * Storage is row-major
// * Element i,j at row i column j is at offset i*16+j.
auto const dct_matrix_64 = [] {
const size_t num_rows = 16;
const size_t num_cols = 64;
const float matrix_scale_factor = std::sqrt(2.0 / double{num_cols});

std::array<float, (num_rows * num_cols)> dct_matrix;
for (size_t i = 0; i < num_rows; i++) {
for (size_t j = 0; j < num_cols; j++) {
dct_matrix[i * num_cols + j] = matrix_scale_factor *
std::cos((M_PI / 2.0 / double{num_cols}) * (i + 1) * (2 * j + 1));
}
}

return dct_matrix;
}();

} // namespace

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// From Wikipedia: standard RGB to luminance (the 'Y' in 'YUV').
const float luma_from_R_coeff = 0.299;
Expand All @@ -41,11 +71,6 @@ const int MIN_HASHABLE_DIM = 5;
// Tent filter.
const int PDQ_NUM_JAROSZ_XY_PASSES = 2;

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// Christoph Zauner 'Implementation and Benchmarking of Perceptual
// Image Hash Functions' 2010
static float* fill_dct_matrix_64_cached();

// ----------------------------------------------------------------
void fillFloatLumaFromRGB(
uint8_t* pRbase,
Expand Down Expand Up @@ -333,15 +358,15 @@ void dct64To16(float A[64][64], float T[16][64], float B[16][16]) {
// * numCols is 64.
// * Storage is row-major
// * Element i,j at row i column j is at offset i*16+j.
float* D = fill_dct_matrix_64_cached();
const auto& D = dct_matrix_64;

// B = D A Dt
// B = (D A) Dt
// with intermediate T = D A

for (int i = 0; i < 16; i++) {
for (int j = 0; j < 64; j++) {
float* pd = &D[i * 64]; // ith row
const auto pd = &D[i * 64]; // ith row
float* pa = &A[0][j];
float sumk = 0.0;

Expand Down Expand Up @@ -371,7 +396,7 @@ void dct64To16(float A[64][64], float T[16][64], float B[16][16]) {
for (int i = 0; i < 16; i++) {
for (int j = 0; j < 16; j++) {
float sumk = 0.0;
float* pd = &D[j * 64]; // jth row
const auto pd = &D[j * 64]; // jth row
float* pt = &T[i][0];
for (int k = 0; k < 64;) {
sumk += pt[k] * pd[k];
Expand Down Expand Up @@ -524,30 +549,6 @@ void pdqBuffer16x16ToBits(float dctOutput16x16[16][16], Hash256* hashptr) {
}
}

// ----------------------------------------------------------------
// See comments on dct64To16. Input is (0..63)x(0..63); output is
// (1..16)x(1..16) with the latter indexed as (0..15)x(0..15).
//
// * numRows is 16.
// * numCols is 64.
// * Storage is row-major
// * Element i,j at row i column j is at offset i*16+j.
static float* fill_dct_matrix_64_cached() {
static std::once_flag initialized;
static float buffer[16 * 64];

std::call_once(initialized, []() {
const float matrix_scale_factor = std::sqrt(2.0 / 64.0);
for (int i = 0; i < 16; i++) {
for (int j = 0; j < 64; j++) {
buffer[i * 64 + j] = matrix_scale_factor *
cos((M_PI / 2 / 64.0) * (i + 1) * (2 * j + 1));
}
}
});
return &buffer[0];
}

} // namespace hashing
} // namespace pdq
} // namespace facebook
69 changes: 35 additions & 34 deletions vpdq/cpp/pdq/cpp/hashing/pdqhashing.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,6 @@
// Copyright (c) Meta Platforms, Inc. and affiliates.
// ================================================================

#include <mutex>

#include <pdq/cpp/downscaling/downscaling.h>
#include <pdq/cpp/hashing/pdqhashing.h>
#include <pdq/cpp/hashing/torben.h>
Expand All @@ -17,6 +15,7 @@
#define _USE_MATH_DEFINES
#endif

#include <array>
#include <cassert>
#include <chrono>
#include <cmath>
Expand All @@ -27,6 +26,37 @@ namespace facebook {
namespace pdq {
namespace hashing {

namespace {

// ----------------------------------------------------------------
// Christoph Zauner 'Implementation and Benchmarking of Perceptual
// Image Hash Functions' 2010
//
// See comments on dct64To16. Input is (0..63)x(0..63); output is
// (1..16)x(1..16) with the latter indexed as (0..15)x(0..15).
//
// * numRows is 16.
// * numCols is 64.
// * Storage is row-major
// * Element i,j at row i column j is at offset i*16+j.
auto const dct_matrix_64 = [] {
const size_t num_rows = 16;
const size_t num_cols = 64;
const float matrix_scale_factor = std::sqrt(2.0 / double{num_cols});

std::array<float, (num_rows * num_cols)> dct_matrix;
for (size_t i = 0; i < num_rows; i++) {
for (size_t j = 0; j < num_cols; j++) {
dct_matrix[i * num_cols + j] = matrix_scale_factor *
std::cos((M_PI / 2.0 / double{num_cols}) * (i + 1) * (2 * j + 1));
}
}

return dct_matrix;
}();

} // namespace

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// From Wikipedia: standard RGB to luminance (the 'Y' in 'YUV').
const float luma_from_R_coeff = 0.299;
Expand All @@ -41,11 +71,6 @@ const int MIN_HASHABLE_DIM = 5;
// Tent filter.
const int PDQ_NUM_JAROSZ_XY_PASSES = 2;

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// Christoph Zauner 'Implementation and Benchmarking of Perceptual
// Image Hash Functions' 2010
static float* fill_dct_matrix_64_cached();

// ----------------------------------------------------------------
void fillFloatLumaFromRGB(
uint8_t* pRbase,
Expand Down Expand Up @@ -333,15 +358,15 @@ void dct64To16(float A[64][64], float T[16][64], float B[16][16]) {
// * numCols is 64.
// * Storage is row-major
// * Element i,j at row i column j is at offset i*16+j.
float* D = fill_dct_matrix_64_cached();
const auto& D = dct_matrix_64;

// B = D A Dt
// B = (D A) Dt
// with intermediate T = D A

for (int i = 0; i < 16; i++) {
for (int j = 0; j < 64; j++) {
float* pd = &D[i * 64]; // ith row
const auto pd = &D[i * 64]; // ith row
float* pa = &A[0][j];
float sumk = 0.0;

Expand Down Expand Up @@ -371,7 +396,7 @@ void dct64To16(float A[64][64], float T[16][64], float B[16][16]) {
for (int i = 0; i < 16; i++) {
for (int j = 0; j < 16; j++) {
float sumk = 0.0;
float* pd = &D[j * 64]; // jth row
const auto pd = &D[j * 64]; // jth row
float* pt = &T[i][0];
for (int k = 0; k < 64;) {
sumk += pt[k] * pd[k];
Expand Down Expand Up @@ -524,30 +549,6 @@ void pdqBuffer16x16ToBits(float dctOutput16x16[16][16], Hash256* hashptr) {
}
}

// ----------------------------------------------------------------
// See comments on dct64To16. Input is (0..63)x(0..63); output is
// (1..16)x(1..16) with the latter indexed as (0..15)x(0..15).
//
// * numRows is 16.
// * numCols is 64.
// * Storage is row-major
// * Element i,j at row i column j is at offset i*16+j.
static float* fill_dct_matrix_64_cached() {
static std::once_flag initialized;
static float buffer[16 * 64];

std::call_once(initialized, []() {
const float matrix_scale_factor = std::sqrt(2.0 / 64.0);
for (int i = 0; i < 16; i++) {
for (int j = 0; j < 64; j++) {
buffer[i * 64 + j] = matrix_scale_factor *
cos((M_PI / 2 / 64.0) * (i + 1) * (2 * j + 1));
}
}
});
return &buffer[0];
}

} // namespace hashing
} // namespace pdq
} // namespace facebook

0 comments on commit 649c1f3

Please sign in to comment.