Closed
Description
Describe the bug
An error is raised when evaluating Langchain QA Chains with a non-openai llm model.
Ragas version: 0.0.21
Python version: 3.10.0
Code to Reproduce
# list of metrics we're going to use
metrics = [
faithfulness,
answer_relevancy,
context_precision,
context_recall,
]
for m in metrics:
m.__setattr__("llm", bedrock_llm)
faithfulness_chain = RagasEvaluatorChain(metric=metrics[0])
Error trace
AttributeError Traceback (most recent call last)
Cell In[25], line 24
21 m.__setattr__("llm", llm)
23 # create evaluation chains
---> 24 faithfulness_chain = RagasEvaluatorChain(metric=metrics[0])
25 answer_relevancy_chain = RagasEvaluatorChain(metric=metrics[1])
26 context_precision_chain = RagasEvaluatorChain(metric=metrics[2])
File ~/anaconda3/envs/python3/lib/python3.10/site-packages/ragas/langchain/evalchain.py:29, in RagasEvaluatorChain.__init__(self, **kwargs)
27 def __init__(self, **kwargs: t.Any):
28 super().__init__(**kwargs)
---> 29 self.metric.init_model()
File ~/anaconda3/envs/python3/lib/python3.10/site-packages/ragas/metrics/base.py:121, in MetricWithLLM.init_model(self)
115 def init_model(self):
116 """
117 Init any models in the metric, this is invoked before evaluate()
118 to load all the models
119 Also check if the api key is valid for OpenAI and AzureOpenAI
120 """
--> 121 self.llm.validate_api_key()
122 if hasattr(self, "embeddings"):
123 # since we are using Langchain Embeddings directly, we need to check this
124 if hasattr(self.embeddings, "validate_api_key"):
AttributeError: 'BedrockChat' object has no attribute 'validate_api_key'
Expected behavior
It should not raise an error because models from Amazon do not need an api key and the validate_api_key
does not exist.
Metadata
Metadata
Assignees
Labels
No labels