Skip to content

Commit

Permalink
fix SGD bug
Browse files Browse the repository at this point in the history
  • Loading branch information
neuralchen committed Apr 25, 2023
1 parent dd1ecdd commit d4bf5f9
Show file tree
Hide file tree
Showing 5 changed files with 174 additions and 11 deletions.
8 changes: 4 additions & 4 deletions models/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from .models import ArcMarginModel
from .models import ResNet
from .models import IRBlock
from .models import SEBlock
from .arcface_models import ArcMarginModel
from .arcface_models import ResNet
from .arcface_models import IRBlock
from .arcface_models import SEBlock
163 changes: 163 additions & 0 deletions models/arcface_models.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,163 @@
import math
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import Parameter
from .config import device, num_classes



class SEBlock(nn.Module):
def __init__(self, channel, reduction=16):
super(SEBlock, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction),
nn.PReLU(),
nn.Linear(channel // reduction, channel),
nn.Sigmoid()
)

def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y


class IRBlock(nn.Module):
expansion = 1

def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True):
super(IRBlock, self).__init__()
self.bn0 = nn.BatchNorm2d(inplanes)
self.conv1 = conv3x3(inplanes, inplanes)
self.bn1 = nn.BatchNorm2d(inplanes)
self.prelu = nn.PReLU()
self.conv2 = conv3x3(inplanes, planes, stride)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
self.use_se = use_se
if self.use_se:
self.se = SEBlock(planes)

def forward(self, x):
residual = x
out = self.bn0(x)
out = self.conv1(out)
out = self.bn1(out)
out = self.prelu(out)

out = self.conv2(out)
out = self.bn2(out)
if self.use_se:
out = self.se(out)

if self.downsample is not None:
residual = self.downsample(x)

out += residual
out = self.prelu(out)

return out


class ResNet(nn.Module):

def __init__(self, block, layers, use_se=True):
self.inplanes = 64
self.use_se = use_se
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.prelu = nn.PReLU()
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.bn2 = nn.BatchNorm2d(512)
self.dropout = nn.Dropout()
self.fc = nn.Linear(512 * 7 * 7, 512)
self.bn3 = nn.BatchNorm1d(512)

for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.xavier_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight)
nn.init.constant_(m.bias, 0)

def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)

layers = []
layers.append(block(self.inplanes, planes, stride, downsample, use_se=self.use_se))
self.inplanes = planes
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, use_se=self.use_se))

return nn.Sequential(*layers)

def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.prelu(x)
x = self.maxpool(x)

x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)

x = self.bn2(x)
x = self.dropout(x)
# feature = x
x = x.view(x.size(0), -1)
x = self.fc(x)
x = self.bn3(x)

return x


class ArcMarginModel(nn.Module):
def __init__(self, args):
super(ArcMarginModel, self).__init__()

self.weight = Parameter(torch.FloatTensor(num_classes, args.emb_size))
nn.init.xavier_uniform_(self.weight)

self.easy_margin = args.easy_margin
self.m = args.margin_m
self.s = args.margin_s

self.cos_m = math.cos(self.m)
self.sin_m = math.sin(self.m)
self.th = math.cos(math.pi - self.m)
self.mm = math.sin(math.pi - self.m) * self.m

def forward(self, input, label):
x = F.normalize(input)
W = F.normalize(self.weight)
cosine = F.linear(x, W)
sine = torch.sqrt(1.0 - torch.pow(cosine, 2))
phi = cosine * self.cos_m - sine * self.sin_m # cos(theta + m)
if self.easy_margin:
phi = torch.where(cosine > 0, phi, cosine)
else:
phi = torch.where(cosine > self.th, phi, cosine - self.mm)
one_hot = torch.zeros(cosine.size(), device=device)
one_hot.scatter_(1, label.view(-1, 1).long(), 1)
output = (one_hot * phi) + ((1.0 - one_hot) * cosine)
output *= self.s
return output
4 changes: 2 additions & 2 deletions models/fs_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,8 +64,8 @@ def initialize(self, opt):

# Id network
netArc_checkpoint = opt.Arc_path
netArc_checkpoint = torch.load(netArc_checkpoint)
self.netArc = netArc_checkpoint['model'].module
netArc_checkpoint = torch.load(netArc_checkpoint, map_location=torch.device("cpu"))
self.netArc = netArc_checkpoint
self.netArc = self.netArc.to(device)
self.netArc.eval()

Expand Down
8 changes: 4 additions & 4 deletions options/test_options.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,12 +22,12 @@ def initialize(self):
self.parser.add_argument("--export_onnx", type=str, help="export ONNX model to a given file")
self.parser.add_argument("--engine", type=str, help="run serialized TRT engine")
self.parser.add_argument("--onnx", type=str, help="run ONNX model via TRT")
self.parser.add_argument("--Arc_path", type=str, default='models/BEST_checkpoint.tar', help="run ONNX model via TRT")
self.parser.add_argument("--pic_a_path", type=str, default='./crop_224/gdg.jpg', help="Person who provides identity information")
self.parser.add_argument("--pic_b_path", type=str, default='./crop_224/zrf.jpg', help="Person who provides information other than their identity")
self.parser.add_argument("--Arc_path", type=str, default='arcface_model/arcface_checkpoint.tar', help="run ONNX model via TRT")
self.parser.add_argument("--pic_a_path", type=str, default='G:/swap_data/ID/elon-musk-hero-image.jpeg', help="Person who provides identity information")
self.parser.add_argument("--pic_b_path", type=str, default='G:/swap_data/ID/bengio.jpg', help="Person who provides information other than their identity")
self.parser.add_argument("--pic_specific_path", type=str, default='./crop_224/zrf.jpg', help="The specific person to be swapped")
self.parser.add_argument("--multisepcific_dir", type=str, default='./demo_file/multispecific', help="Dir for multi specific")
self.parser.add_argument("--video_path", type=str, default='./demo_file/multi_people_1080p.mp4', help="path for the video to swap")
self.parser.add_argument("--video_path", type=str, default='G:/swap_data/video/HSB_Demo_Trim.mp4', help="path for the video to swap")
self.parser.add_argument("--temp_path", type=str, default='./temp_results', help="path to save temporarily images")
self.parser.add_argument("--output_path", type=str, default='./output/', help="results path")
self.parser.add_argument('--id_thres', type=float, default=0.03, help='how many test images to run')
Expand Down
2 changes: 1 addition & 1 deletion test_one_image.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,4 +83,4 @@ def lcm(a, b): return abs(a * b) / fractions.gcd(a, b) if a and b else 0

output = output*255

cv2.imwrite(opt.output_path + 'result.jpg',output)
cv2.imwrite(opt.output_path + 'result.jpg', output)

0 comments on commit d4bf5f9

Please sign in to comment.