This is a Pytorch implementation of CSA as proposed in the paper Cognitive Semantic Augmentation (CSA) LEO Satellite Networks for Earth Observation\
The codes are compatible with the packages:
-
pytorch 1.8.0
-
torchvision 0.9.0a0
-
numpy 1.23.1
-
tensorboardX 2.4
The code can be run on the datasets EuroSAT
python train2.py
python3 evaluate_fl.py --mod apsk --dataset EuroSAT --latent_d 32 --save_root ./results-fl --name EuroSAT-num_e16-latent_d32-modapsk-psnr12.1-lam0.05
Top1 accuracy of confusion matrix using DTJSCC based on 16APSK Rician channel where PSNR=12dB and K=128.
Top1 accuracy of CSA satellite networks using DT-JSCC over 16APSK LEO Rician channel while DT-JSCC training at 4dB and CSA/federated learning training at 12dB
Top1 accuracy comparison of CSA and non-CSA DT-JSCC K=32 systems while PSNR=12dB and 16APSK over LEO Rician channel.
@article{chou2024cognitivesemanticaugmentationleo,
title={Cognitive Semantic Augmentation LEO Satellite Networks for Earth Observation},
author={Hong-fu Chou and Vu Nguyen Ha and Prabhu Thiruvasagam and Thanh-Dung Le and Geoffrey Eappen and Ti Ti Nguyen and Duc Dung Tran and Luis M. Garces-Socarras and Juan Carlos Merlano-Duncan and Symeon Chatzinotas},
year={2024},
eprint={2410.21916},
archivePrefix={arXiv},
primaryClass={cs.NI},
url={https://arxiv.org/abs/2410.21916},
}




