Skip to content

Cognitive Semantic Augmentation (CSA) LEO Satellite Networks for Earth Observation: SENTRY aims to enhance the efficiency of EO systems by combining advanced satellite communication networks with innovative communication concepts.

Notifications You must be signed in to change notification settings

exhan100chou/CSA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cognitive Semantic Augmentation (CSA) LEO Satellite Networks for Earth Observation

This is a Pytorch implementation of CSA as proposed in the paper Cognitive Semantic Augmentation (CSA) LEO Satellite Networks for Earth Observation\

Requirements

The codes are compatible with the packages:

  • pytorch 1.8.0

  • torchvision 0.9.0a0

  • numpy 1.23.1

  • tensorboardX 2.4

The code can be run on the datasets EuroSAT

Run experiments

Training the CSA model

python train2.py

Evaluating the trained CSA model or federated learning

python3 evaluate_fl.py --mod apsk --dataset EuroSAT --latent_d 32 --save_root ./results-fl --name EuroSAT-num_e16-latent_d32-modapsk-psnr12.1-lam0.05

Block diagram of CSA LEO

alt text

TXRX diagram of CSA

alt text

Top1 accuracy of confusion matrix using DTJSCC based on 16APSK Rician channel where PSNR=12dB and K=128.

alt text

Top1 accuracy of CSA satellite networks using DT-JSCC over 16APSK LEO Rician channel while DT-JSCC training at 4dB and CSA/federated learning training at 12dB

alt text

Top1 accuracy comparison of CSA and non-CSA DT-JSCC K=32 systems while PSNR=12dB and 16APSK over LEO Rician channel.

alt text

Top1 accuracy using DT-JSCC based on 16APSK LEO Rician and LEO Rayleigh channel

alt text

Citiation

@article{chou2024cognitivesemanticaugmentationleo,
      title={Cognitive Semantic Augmentation LEO Satellite Networks for Earth Observation}, 
      author={Hong-fu Chou and Vu Nguyen Ha and Prabhu Thiruvasagam and Thanh-Dung Le and Geoffrey Eappen and Ti Ti Nguyen and Duc Dung Tran and Luis M. Garces-Socarras and Juan Carlos Merlano-Duncan and Symeon Chatzinotas},
      year={2024},
      eprint={2410.21916},
      archivePrefix={arXiv},
      primaryClass={cs.NI},
      url={https://arxiv.org/abs/2410.21916}, 
}

About

Cognitive Semantic Augmentation (CSA) LEO Satellite Networks for Earth Observation: SENTRY aims to enhance the efficiency of EO systems by combining advanced satellite communication networks with innovative communication concepts.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages