Skip to content

Commit

Permalink
Synced practice exercise intros and instructions to problem-specs. (#…
Browse files Browse the repository at this point in the history
  • Loading branch information
BethanyG authored Jan 10, 2025
1 parent 8ddd195 commit c8b3a39
Show file tree
Hide file tree
Showing 24 changed files with 304 additions and 120 deletions.
2 changes: 1 addition & 1 deletion exercises/practice/affine-cipher/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ Create an implementation of the affine cipher, an ancient encryption system crea

The affine cipher is a type of monoalphabetic substitution cipher.
Each character is mapped to its numeric equivalent, encrypted with a mathematical function and then converted to the letter relating to its new numeric value.
Although all monoalphabetic ciphers are weak, the affine cipher is much stronger than the atbash cipher, because it has many more keys.
Although all monoalphabetic ciphers are weak, the affine cipher is much stronger than the Atbash cipher, because it has many more keys.

[//]: # " monoalphabetic as spelled by Merriam-Webster, compare to polyalphabetic "

Expand Down
2 changes: 1 addition & 1 deletion exercises/practice/atbash-cipher/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Instructions

Create an implementation of the atbash cipher, an ancient encryption system created in the Middle East.
Create an implementation of the Atbash cipher, an ancient encryption system created in the Middle East.

The Atbash cipher is a simple substitution cipher that relies on transposing all the letters in the alphabet such that the resulting alphabet is backwards.
The first letter is replaced with the last letter, the second with the second-last, and so on.
Expand Down
14 changes: 4 additions & 10 deletions exercises/practice/change/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,14 +1,8 @@
# Instructions

Correctly determine the fewest number of coins to be given to a customer such that the sum of the coins' value would equal the correct amount of change.
Determine the fewest number of coins to give a customer so that the sum of their values equals the correct amount of change.

## For example
## Examples

- An input of 15 with [1, 5, 10, 25, 100] should return one nickel (5) and one dime (10) or [5, 10]
- An input of 40 with [1, 5, 10, 25, 100] should return one nickel (5) and one dime (10) and one quarter (25) or [5, 10, 25]

## Edge cases

- Does your algorithm work for any given set of coins?
- Can you ask for negative change?
- Can you ask for a change value smaller than the smallest coin value?
- An amount of 15 with available coin values [1, 5, 10, 25, 100] should return one coin of value 5 and one coin of value 10, or [5, 10].
- An amount of 40 with available coin values [1, 5, 10, 25, 100] should return one coin of value 5, one coin of value 10, and one coin of value 25, or [5, 10, 25].
26 changes: 26 additions & 0 deletions exercises/practice/change/.docs/introduction.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
# Introduction

In the mystical village of Coinholt, you stand behind the counter of your bakery, arranging a fresh batch of pastries.
The door creaks open, and in walks Denara, a skilled merchant with a keen eye for quality goods.
After a quick meal, she slides a shimmering coin across the counter, representing a value of 100 units.

You smile, taking the coin, and glance at the total cost of the meal: 88 units.
That means you need to return 12 units in change.

Denara holds out her hand expectantly.
"Just give me the fewest coins," she says with a smile.
"My pouch is already full, and I don't want to risk losing them on the road."

You know you have a few options.
"We have Lumis (worth 10 units), Viras (worth 5 units), and Zenth (worth 2 units) available for change."

You quickly calculate the possibilities in your head:

- one Lumis (1 × 10 units) + one Zenth (1 × 2 units) = 2 coins total
- two Viras (2 × 5 units) + one Zenth (1 × 2 units) = 3 coins total
- six Zenth (6 × 2 units) = 6 coins total

"The best choice is two coins: one Lumis and one Zenth," you say, handing her the change.

Denara smiles, clearly impressed.
"As always, you've got it right."
28 changes: 1 addition & 27 deletions exercises/practice/collatz-conjecture/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,29 +1,3 @@
# Instructions

The Collatz Conjecture or 3x+1 problem can be summarized as follows:

Take any positive integer n.
If n is even, divide n by 2 to get n / 2.
If n is odd, multiply n by 3 and add 1 to get 3n + 1.
Repeat the process indefinitely.
The conjecture states that no matter which number you start with, you will always reach 1 eventually.

Given a number n, return the number of steps required to reach 1.

## Examples

Starting with n = 12, the steps would be as follows:

0. 12
1. 6
2. 3
3. 10
4. 5
5. 16
6. 8
7. 4
8. 2
9. 1

Resulting in 9 steps.
So for input n = 12, the return value would be 9.
Given a positive integer, return the number of steps it takes to reach 1 according to the rules of the Collatz Conjecture.
28 changes: 28 additions & 0 deletions exercises/practice/collatz-conjecture/.docs/introduction.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
# Introduction

One evening, you stumbled upon an old notebook filled with cryptic scribbles, as though someone had been obsessively chasing an idea.
On one page, a single question stood out: **Can every number find its way to 1?**
It was tied to something called the **Collatz Conjecture**, a puzzle that has baffled thinkers for decades.

The rules were deceptively simple.
Pick any positive integer.

- If it's even, divide it by 2.
- If it's odd, multiply it by 3 and add 1.

Then, repeat these steps with the result, continuing indefinitely.

Curious, you picked number 12 to test and began the journey:

12 ➜ 6 ➜ 3 ➜ 10 ➜ 5 ➜ 16 ➜ 8 ➜ 4 ➜ 2 ➜ 1

Counting from the second number (6), it took 9 steps to reach 1, and each time the rules repeated, the number kept changing.
At first, the sequence seemed unpredictable — jumping up, down, and all over.
Yet, the conjecture claims that no matter the starting number, we'll always end at 1.

It was fascinating, but also puzzling.
Why does this always seem to work?
Could there be a number where the process breaks down, looping forever or escaping into infinity?
The notebook suggested solving this could reveal something profound — and with it, fame, [fortune][collatz-prize], and a place in history awaits whoever could unlock its secrets.

[collatz-prize]: https://mathprize.net/posts/collatz-conjecture/
107 changes: 89 additions & 18 deletions exercises/practice/complex-numbers/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,29 +1,100 @@
# Instructions

A complex number is a number in the form `a + b * i` where `a` and `b` are real and `i` satisfies `i^2 = -1`.
A **complex number** is expressed in the form `z = a + b * i`, where:

`a` is called the real part and `b` is called the imaginary part of `z`.
The conjugate of the number `a + b * i` is the number `a - b * i`.
The absolute value of a complex number `z = a + b * i` is a real number `|z| = sqrt(a^2 + b^2)`. The square of the absolute value `|z|^2` is the result of multiplication of `z` by its complex conjugate.
- `a` is the **real part** (a real number),

The sum/difference of two complex numbers involves adding/subtracting their real and imaginary parts separately:
`(a + i * b) + (c + i * d) = (a + c) + (b + d) * i`,
`(a + i * b) - (c + i * d) = (a - c) + (b - d) * i`.
- `b` is the **imaginary part** (also a real number), and

Multiplication result is by definition
`(a + i * b) * (c + i * d) = (a * c - b * d) + (b * c + a * d) * i`.
- `i` is the **imaginary unit** satisfying `i^2 = -1`.

The reciprocal of a non-zero complex number is
`1 / (a + i * b) = a/(a^2 + b^2) - b/(a^2 + b^2) * i`.
## Operations on Complex Numbers

Dividing a complex number `a + i * b` by another `c + i * d` gives:
`(a + i * b) / (c + i * d) = (a * c + b * d)/(c^2 + d^2) + (b * c - a * d)/(c^2 + d^2) * i`.
### Conjugate

Raising e to a complex exponent can be expressed as `e^(a + i * b) = e^a * e^(i * b)`, the last term of which is given by Euler's formula `e^(i * b) = cos(b) + i * sin(b)`.
The conjugate of the complex number `z = a + b * i` is given by:

Implement the following operations:
```text
zc = a - b * i
```

- addition, subtraction, multiplication and division of two complex numbers,
- conjugate, absolute value, exponent of a given complex number.
### Absolute Value

Assume the programming language you are using does not have an implementation of complex numbers.
The absolute value (or modulus) of `z` is defined as:

```text
|z| = sqrt(a^2 + b^2)
```

The square of the absolute value is computed as the product of `z` and its conjugate `zc`:

```text
|z|^2 = z * zc = a^2 + b^2
```

### Addition

The sum of two complex numbers `z1 = a + b * i` and `z2 = c + d * i` is computed by adding their real and imaginary parts separately:

```text
z1 + z2 = (a + b * i) + (c + d * i)
= (a + c) + (b + d) * i
```

### Subtraction

The difference of two complex numbers is obtained by subtracting their respective parts:

```text
z1 - z2 = (a + b * i) - (c + d * i)
= (a - c) + (b - d) * i
```

### Multiplication

The product of two complex numbers is defined as:

```text
z1 * z2 = (a + b * i) * (c + d * i)
= (a * c - b * d) + (b * c + a * d) * i
```

### Reciprocal

The reciprocal of a non-zero complex number is given by:

```text
1 / z = 1 / (a + b * i)
= a / (a^2 + b^2) - b / (a^2 + b^2) * i
```

### Division

The division of one complex number by another is given by:

```text
z1 / z2 = z1 * (1 / z2)
= (a + b * i) / (c + d * i)
= (a * c + b * d) / (c^2 + d^2) + (b * c - a * d) / (c^2 + d^2) * i
```

### Exponentiation

Raising _e_ (the base of the natural logarithm) to a complex exponent can be expressed using Euler's formula:

```text
e^(a + b * i) = e^a * e^(b * i)
= e^a * (cos(b) + i * sin(b))
```

## Implementation Requirements

Given that you should not use built-in support for complex numbers, implement the following operations:

- **addition** of two complex numbers
- **subtraction** of two complex numbers
- **multiplication** of two complex numbers
- **division** of two complex numbers
- **conjugate** of a complex number
- **absolute value** of a complex number
- **exponentiation** of _e_ (the base of the natural logarithm) to a complex number
4 changes: 3 additions & 1 deletion exercises/practice/dominoes/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,9 @@

Make a chain of dominoes.

Compute a way to order a given set of dominoes in such a way that they form a correct domino chain (the dots on one half of a stone match the dots on the neighboring half of an adjacent stone) and that dots on the halves of the stones which don't have a neighbor (the first and last stone) match each other.
Compute a way to order a given set of domino stones so that they form a correct domino chain.
In the chain, the dots on one half of a stone must match the dots on the neighboring half of an adjacent stone.
Additionally, the dots on the halves of the stones without neighbors (the first and last stone) must match each other.

For example given the stones `[2|1]`, `[2|3]` and `[1|3]` you should compute something
like `[1|2] [2|3] [3|1]` or `[3|2] [2|1] [1|3]` or `[1|3] [3|2] [2|1]` etc, where the first and last numbers are the same.
Expand Down
13 changes: 13 additions & 0 deletions exercises/practice/dominoes/.docs/introduction.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# Introduction

In Toyland, the trains are always busy delivering treasures across the city, from shiny marbles to rare building blocks.
The tracks they run on are made of colorful domino-shaped pieces, each marked with two numbers.
For the trains to move, the dominoes must form a perfect chain where the numbers match.

Today, an urgent delivery of rare toys is on hold.
You've been handed a set of track pieces to inspect.
If they can form a continuous chain, the train will be on its way, bringing smiles across Toyland.
If not, the set will be discarded, and another will be tried.

The toys are counting on you to solve this puzzle.
Will the dominoes connect the tracks and send the train rolling, or will the set be left behind?
48 changes: 33 additions & 15 deletions exercises/practice/eliuds-eggs/.docs/introduction.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,36 +12,54 @@ The position information encoding is calculated as follows:
2. Convert the number from binary to decimal.
3. Show the result on the display.

Example 1:
## Example 1

![Seven individual nest boxes arranged in a row whose first, third, fourth and seventh nests each have a single egg.](https://assets.exercism.org/images/exercises/eliuds-eggs/example-1-coop.svg)

```text
Chicken Coop:
_ _ _ _ _ _ _
|E| |E|E| | |E|
```

### Resulting Binary

![1011001](https://assets.exercism.org/images/exercises/eliuds-eggs/example-1-binary.svg)

```text
_ _ _ _ _ _ _
|1|0|1|1|0|0|1|
```

Resulting Binary:
1 0 1 1 0 0 1
### Decimal number on the display

Decimal number on the display:
89

Actual eggs in the coop:
### Actual eggs in the coop

4

## Example 2

![Seven individual nest boxes arranged in a row where only the fourth nest has an egg.](https://assets.exercism.org/images/exercises/eliuds-eggs/example-2-coop.svg)

```text
_ _ _ _ _ _ _
| | | |E| | | |
```

Example 2:
### Resulting Binary

![0001000](https://assets.exercism.org/images/exercises/eliuds-eggs/example-2-binary.svg)

```text
Chicken Coop:
_ _ _ _ _ _ _ _
| | | |E| | | | |
_ _ _ _ _ _ _
|0|0|0|1|0|0|0|
```

Resulting Binary:
0 0 0 1 0 0 0 0
### Decimal number on the display

Decimal number on the display:
16

Actual eggs in the coop:
### Actual eggs in the coop

1
```
20 changes: 10 additions & 10 deletions exercises/practice/grade-school/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,21 +1,21 @@
# Instructions

Given students' names along with the grade that they are in, create a roster for the school.
Given students' names along with the grade they are in, create a roster for the school.

In the end, you should be able to:

- Add a student's name to the roster for a grade
- Add a student's name to the roster for a grade:
- "Add Jim to grade 2."
- "OK."
- Get a list of all students enrolled in a grade
- Get a list of all students enrolled in a grade:
- "Which students are in grade 2?"
- "We've only got Jim just now."
- "We've only got Jim right now."
- Get a sorted list of all students in all grades.
Grades should sort as 1, 2, 3, etc., and students within a grade should be sorted alphabetically by name.
- "Who all is enrolled in school right now?"
Grades should be sorted as 1, 2, 3, etc., and students within a grade should be sorted alphabetically by name.
- "Who is enrolled in school right now?"
- "Let me think.
We have Anna, Barb, and Charlie in grade 1, Alex, Peter, and Zoe in grade 2 and Jim in grade 5.
So the answer is: Anna, Barb, Charlie, Alex, Peter, Zoe and Jim"
We have Anna, Barb, and Charlie in grade 1, Alex, Peter, and Zoe in grade 2, and Jim in grade 5.
So the answer is: Anna, Barb, Charlie, Alex, Peter, Zoe, and Jim."

Note that all our students only have one name (It's a small town, what do you want?) and each student cannot be added more than once to a grade or the roster.
In fact, when a test attempts to add the same student more than once, your implementation should indicate that this is incorrect.
Note that all our students only have one name (it's a small town, what do you want?), and each student cannot be added more than once to a grade or the roster.
If a test attempts to add the same student more than once, your implementation should indicate that this is incorrect.
11 changes: 0 additions & 11 deletions exercises/practice/hamming/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,15 +2,6 @@

Calculate the Hamming distance between two DNA strands.

Your body is made up of cells that contain DNA.
Those cells regularly wear out and need replacing, which they achieve by dividing into daughter cells.
In fact, the average human body experiences about 10 quadrillion cell divisions in a lifetime!

When cells divide, their DNA replicates too.
Sometimes during this process mistakes happen and single pieces of DNA get encoded with the incorrect information.
If we compare two strands of DNA and count the differences between them we can see how many mistakes occurred.
This is known as the "Hamming distance".

We read DNA using the letters C, A, G and T.
Two strands might look like this:

Expand All @@ -20,8 +11,6 @@ Two strands might look like this:

They have 7 differences, and therefore the Hamming distance is 7.

The Hamming distance is useful for lots of things in science, not just biology, so it's a nice phrase to be familiar with :)

## Implementation notes

The Hamming distance is only defined for sequences of equal length, so an attempt to calculate it between sequences of different lengths should not work.
Loading

0 comments on commit c8b3a39

Please sign in to comment.