Skip to content

Sync docs and metadata from problem specs #619

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 5 additions & 6 deletions exercises/practice/anagram/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,13 +1,12 @@
# Instructions

Your task is to, given a target word and a set of candidate words, to find the subset of the candidates that are anagrams of the target.
Given a target word and one or more candidate words, your task is to find the candidates that are anagrams of the target.

An anagram is a rearrangement of letters to form a new word: for example `"owns"` is an anagram of `"snow"`.
A word is _not_ its own anagram: for example, `"stop"` is not an anagram of `"stop"`.

The target and candidates are words of one or more ASCII alphabetic characters (`A`-`Z` and `a`-`z`).
Lowercase and uppercase characters are equivalent: for example, `"PoTS"` is an anagram of `"sTOp"`, but `StoP` is not an anagram of `sTOp`.
The anagram set is the subset of the candidate set that are anagrams of the target (in any order).
Words in the anagram set should have the same letter case as in the candidate set.
The target word and candidate words are made up of one or more ASCII alphabetic characters (`A`-`Z` and `a`-`z`).
Lowercase and uppercase characters are equivalent: for example, `"PoTS"` is an anagram of `"sTOp"`, but `"StoP"` is not an anagram of `"sTOp"`.
The words you need to find should be taken from the candidate words, using the same letter case.

Given the target `"stone"` and candidates `"stone"`, `"tones"`, `"banana"`, `"tons"`, `"notes"`, `"Seton"`, the anagram set is `"tones"`, `"notes"`, `"Seton"`.
Given the target `"stone"` and the candidate words `"stone"`, `"tones"`, `"banana"`, `"tons"`, `"notes"`, and `"Seton"`, the anagram words you need to find are `"tones"`, `"notes"`, and `"Seton"`.
2 changes: 1 addition & 1 deletion exercises/practice/atbash-cipher/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Instructions

Create an implementation of the atbash cipher, an ancient encryption system created in the Middle East.
Create an implementation of the Atbash cipher, an ancient encryption system created in the Middle East.

The Atbash cipher is a simple substitution cipher that relies on transposing all the letters in the alphabet such that the resulting alphabet is backwards.
The first letter is replaced with the last letter, the second with the second-last, and so on.
Expand Down
2 changes: 1 addition & 1 deletion exercises/practice/atbash-cipher/.meta/config.json
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
".meta/example.nim"
]
},
"blurb": "Create an implementation of the atbash cipher, an ancient encryption system created in the Middle East.",
"blurb": "Create an implementation of the Atbash cipher, an ancient encryption system created in the Middle East.",
"source": "Wikipedia",
"source_url": "https://en.wikipedia.org/wiki/Atbash"
}
28 changes: 1 addition & 27 deletions exercises/practice/collatz-conjecture/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,29 +1,3 @@
# Instructions

The Collatz Conjecture or 3x+1 problem can be summarized as follows:

Take any positive integer n.
If n is even, divide n by 2 to get n / 2.
If n is odd, multiply n by 3 and add 1 to get 3n + 1.
Repeat the process indefinitely.
The conjecture states that no matter which number you start with, you will always reach 1 eventually.

Given a number n, return the number of steps required to reach 1.

## Examples

Starting with n = 12, the steps would be as follows:

0. 12
1. 6
2. 3
3. 10
4. 5
5. 16
6. 8
7. 4
8. 2
9. 1

Resulting in 9 steps.
So for input n = 12, the return value would be 9.
Given a positive integer, return the number of steps it takes to reach 1 according to the rules of the Collatz Conjecture.
28 changes: 28 additions & 0 deletions exercises/practice/collatz-conjecture/.docs/introduction.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
# Introduction

One evening, you stumbled upon an old notebook filled with cryptic scribbles, as though someone had been obsessively chasing an idea.
On one page, a single question stood out: **Can every number find its way to 1?**
It was tied to something called the **Collatz Conjecture**, a puzzle that has baffled thinkers for decades.

The rules were deceptively simple.
Pick any positive integer.

- If it's even, divide it by 2.
- If it's odd, multiply it by 3 and add 1.

Then, repeat these steps with the result, continuing indefinitely.

Curious, you picked number 12 to test and began the journey:

12 ➜ 6 ➜ 3 ➜ 10 ➜ 5 ➜ 16 ➜ 8 ➜ 4 ➜ 2 ➜ 1

Counting from the second number (6), it took 9 steps to reach 1, and each time the rules repeated, the number kept changing.
At first, the sequence seemed unpredictable — jumping up, down, and all over.
Yet, the conjecture claims that no matter the starting number, we'll always end at 1.

It was fascinating, but also puzzling.
Why does this always seem to work?
Could there be a number where the process breaks down, looping forever or escaping into infinity?
The notebook suggested solving this could reveal something profound — and with it, fame, [fortune][collatz-prize], and a place in history awaits whoever could unlock its secrets.

[collatz-prize]: https://mathprize.net/posts/collatz-conjecture/
4 changes: 2 additions & 2 deletions exercises/practice/collatz-conjecture/.meta/config.json
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,6 @@
]
},
"blurb": "Calculate the number of steps to reach 1 using the Collatz conjecture.",
"source": "An unsolved problem in mathematics named after mathematician Lothar Collatz",
"source_url": "https://en.wikipedia.org/wiki/3x_%2B_1_problem"
"source": "Wikipedia",
"source_url": "https://en.wikipedia.org/wiki/Collatz_conjecture"
}
20 changes: 10 additions & 10 deletions exercises/practice/grade-school/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,21 +1,21 @@
# Instructions

Given students' names along with the grade that they are in, create a roster for the school.
Given students' names along with the grade they are in, create a roster for the school.

In the end, you should be able to:

- Add a student's name to the roster for a grade
- Add a student's name to the roster for a grade:
- "Add Jim to grade 2."
- "OK."
- Get a list of all students enrolled in a grade
- Get a list of all students enrolled in a grade:
- "Which students are in grade 2?"
- "We've only got Jim just now."
- "We've only got Jim right now."
- Get a sorted list of all students in all grades.
Grades should sort as 1, 2, 3, etc., and students within a grade should be sorted alphabetically by name.
- "Who all is enrolled in school right now?"
Grades should be sorted as 1, 2, 3, etc., and students within a grade should be sorted alphabetically by name.
- "Who is enrolled in school right now?"
- "Let me think.
We have Anna, Barb, and Charlie in grade 1, Alex, Peter, and Zoe in grade 2 and Jim in grade 5.
So the answer is: Anna, Barb, Charlie, Alex, Peter, Zoe and Jim"
We have Anna, Barb, and Charlie in grade 1, Alex, Peter, and Zoe in grade 2, and Jim in grade 5.
So the answer is: Anna, Barb, Charlie, Alex, Peter, Zoe, and Jim."

Note that all our students only have one name (It's a small town, what do you want?) and each student cannot be added more than once to a grade or the roster.
In fact, when a test attempts to add the same student more than once, your implementation should indicate that this is incorrect.
Note that all our students only have one name (it's a small town, what do you want?), and each student cannot be added more than once to a grade or the roster.
If a test attempts to add the same student more than once, your implementation should indicate that this is incorrect.
14 changes: 5 additions & 9 deletions exercises/practice/grains/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,15 +1,11 @@
# Instructions

Calculate the number of grains of wheat on a chessboard given that the number on each square doubles.
Calculate the number of grains of wheat on a chessboard.

There once was a wise servant who saved the life of a prince.
The king promised to pay whatever the servant could dream up.
Knowing that the king loved chess, the servant told the king he would like to have grains of wheat.
One grain on the first square of a chess board, with the number of grains doubling on each successive square.
A chessboard has 64 squares.
Square 1 has one grain, square 2 has two grains, square 3 has four grains, and so on, doubling each time.

There are 64 squares on a chessboard (where square 1 has one grain, square 2 has two grains, and so on).
Write code that calculates:

Write code that shows:

- how many grains were on a given square, and
- the number of grains on a given square
- the total number of grains on the chessboard
6 changes: 6 additions & 0 deletions exercises/practice/grains/.docs/introduction.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
# Introduction

There once was a wise servant who saved the life of a prince.
The king promised to pay whatever the servant could dream up.
Knowing that the king loved chess, the servant told the king he would like to have grains of wheat.
One grain on the first square of a chessboard, with the number of grains doubling on each successive square.
2 changes: 1 addition & 1 deletion exercises/practice/grains/.meta/config.json
Original file line number Diff line number Diff line change
Expand Up @@ -18,5 +18,5 @@
},
"blurb": "Calculate the number of grains of wheat on a chessboard given that the number on each square doubles.",
"source": "The CodeRanch Cattle Drive, Assignment 6",
"source_url": "https://coderanch.com/wiki/718824/Grains"
"source_url": "https://web.archive.org/web/20240908084142/https://coderanch.com/wiki/718824/Grains"
}
17 changes: 3 additions & 14 deletions exercises/practice/hamming/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,26 +1,15 @@
# Instructions

Calculate the Hamming Distance between two DNA strands.
Calculate the Hamming distance between two DNA strands.

Your body is made up of cells that contain DNA.
Those cells regularly wear out and need replacing, which they achieve by dividing into daughter cells.
In fact, the average human body experiences about 10 quadrillion cell divisions in a lifetime!

When cells divide, their DNA replicates too.
Sometimes during this process mistakes happen and single pieces of DNA get encoded with the incorrect information.
If we compare two strands of DNA and count the differences between them we can see how many mistakes occurred.
This is known as the "Hamming Distance".

We read DNA using the letters C,A,G and T.
We read DNA using the letters C, A, G and T.
Two strands might look like this:

GAGCCTACTAACGGGAT
CATCGTAATGACGGCCT
^ ^ ^ ^ ^ ^^

They have 7 differences, and therefore the Hamming Distance is 7.

The Hamming Distance is useful for lots of things in science, not just biology, so it's a nice phrase to be familiar with :)
They have 7 differences, and therefore the Hamming distance is 7.

## Implementation notes

Expand Down
12 changes: 12 additions & 0 deletions exercises/practice/hamming/.docs/introduction.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
# Introduction

Your body is made up of cells that contain DNA.
Those cells regularly wear out and need replacing, which they achieve by dividing into daughter cells.
In fact, the average human body experiences about 10 quadrillion cell divisions in a lifetime!

When cells divide, their DNA replicates too.
Sometimes during this process mistakes happen and single pieces of DNA get encoded with the incorrect information.
If we compare two strands of DNA and count the differences between them, we can see how many mistakes occurred.
This is known as the "Hamming distance".

The Hamming distance is useful in many areas of science, not just biology, so it's a nice phrase to be familiar with :)
2 changes: 1 addition & 1 deletion exercises/practice/hamming/.meta/config.json
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
".meta/example.nim"
]
},
"blurb": "Calculate the Hamming difference between two DNA strands.",
"blurb": "Calculate the Hamming distance between two DNA strands.",
"source": "The Calculating Point Mutations problem at Rosalind",
"source_url": "https://rosalind.info/problems/hamm/"
}
2 changes: 1 addition & 1 deletion exercises/practice/leap/.meta/config.json
Original file line number Diff line number Diff line change
Expand Up @@ -19,5 +19,5 @@
},
"blurb": "Determine whether a given year is a leap year.",
"source": "CodeRanch Cattle Drive, Assignment 3",
"source_url": "https://coderanch.com/t/718816/Leap"
"source_url": "https://web.archive.org/web/20240907033714/https://coderanch.com/t/718816/Leap"
}
34 changes: 17 additions & 17 deletions exercises/practice/linked-list/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,26 +1,26 @@
# Instructions

Implement a doubly linked list.
Your team has decided to use a doubly linked list to represent each train route in the schedule.
Each station along the train's route will be represented by a node in the linked list.

Like an array, a linked list is a simple linear data structure.
Several common data types can be implemented using linked lists, like queues, stacks, and associative arrays.
You don't need to worry about arrival and departure times at the stations.
Each station will simply be represented by a number.

A linked list is a collection of data elements called *nodes*.
In a *singly linked list* each node holds a value and a link to the next node.
In a *doubly linked list* each node also holds a link to the previous node.
Routes can be extended, adding stations to the beginning or end of a route.
They can also be shortened by removing stations from the beginning or the end of a route.

You will write an implementation of a doubly linked list.
Implement a Node to hold a value and pointers to the next and previous nodes.
Then implement a List which holds references to the first and last node and offers an array-like interface for adding and removing items:
Sometimes a station gets closed down, and in that case the station needs to be removed from the route, even if it is not at the beginning or end of the route.

- `push` (*insert value at back*);
- `pop` (*remove value at back*);
- `shift` (*remove value at front*).
- `unshift` (*insert value at front*);
The size of a route is measured not by how far the train travels, but by how many stations it stops at.

To keep your implementation simple, the tests will not cover error conditions.
Specifically: `pop` or `shift` will never be called on an empty list.
~~~~exercism/note
The linked list is a fundamental data structure in computer science, often used in the implementation of other data structures.
As the name suggests, it is a list of nodes that are linked together.
It is a list of "nodes", where each node links to its neighbor or neighbors.
In a **singly linked list** each node links only to the node that follows it.
In a **doubly linked list** each node links to both the node that comes before, as well as the node that comes after.

Read more about [linked lists on Wikipedia][linked-lists].
If you want to dig deeper into linked lists, check out [this article][intro-linked-list] that explains it using nice drawings.

[linked-lists]: https://en.wikipedia.org/wiki/Linked_list
[intro-linked-list]: https://medium.com/basecs/whats-a-linked-list-anyway-part-1-d8b7e6508b9d
~~~~
6 changes: 6 additions & 0 deletions exercises/practice/linked-list/.docs/introduction.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
# Introduction

You are working on a project to develop a train scheduling system for a busy railway network.

You've been asked to develop a prototype for the train routes in the scheduling system.
Each route consists of a sequence of train stations that a given train stops at.
54 changes: 29 additions & 25 deletions exercises/practice/luhn/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,64 +1,68 @@
# Instructions

Given a number determine whether or not it is valid per the Luhn formula.
Determine whether a number is valid according to the [Luhn formula][luhn].

The [Luhn algorithm][luhn] is a simple checksum formula used to validate a variety of identification numbers, such as credit card numbers and Canadian Social Insurance Numbers.
The number will be provided as a string.

The task is to check if a given string is valid.

## Validating a Number
## Validating a number

Strings of length 1 or less are not valid.
Spaces are allowed in the input, but they should be stripped before checking.
All other non-digit characters are disallowed.

### Example 1: valid credit card number
## Examples

```text
4539 3195 0343 6467
```
### Valid credit card number

The first step of the Luhn algorithm is to double every second digit, starting from the right.
We will be doubling
The number to be checked is `4539 3195 0343 6467`.

The first step of the Luhn algorithm is to start at the end of the number and double every second digit, beginning with the second digit from the right and moving left.

```text
4_3_ 3_9_ 0_4_ 6_6_
4539 3195 0343 6467
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ (double these)
```

If doubling the number results in a number greater than 9 then subtract 9 from the product.
The results of our doubling:
If the result of doubling a digit is greater than 9, we subtract 9 from that result.
We end up with:

```text
8569 6195 0383 3437
```

Then sum all of the digits:
Finally, we sum all digits.
If the sum is evenly divisible by 10, the original number is valid.

```text
8+5+6+9+6+1+9+5+0+3+8+3+3+4+3+7 = 80
8 + 5 + 6 + 9 + 6 + 1 + 9 + 5 + 0 + 3 + 8 + 3 + 3 + 4 + 3 + 7 = 80
```

If the sum is evenly divisible by 10, then the number is valid.
This number is valid!
80 is evenly divisible by 10, so number `4539 3195 0343 6467` is valid!

### Invalid Canadian SIN

The number to be checked is `066 123 468`.

### Example 2: invalid credit card number
We start at the end of the number and double every second digit, beginning with the second digit from the right and moving left.

```text
8273 1232 7352 0569
066 123 478
↑ ↑ ↑ ↑ (double these)
```

Double the second digits, starting from the right
If the result of doubling a digit is greater than 9, we subtract 9 from that result.
We end up with:

```text
7253 2262 5312 0539
036 226 458
```

Sum the digits
We sum the digits:

```text
7+2+5+3+2+2+6+2+5+3+1+2+0+5+3+9 = 57
0 + 3 + 6 + 2 + 2 + 6 + 4 + 5 + 8 = 36
```

57 is not evenly divisible by 10, so this number is not valid.
36 is not evenly divisible by 10, so number `066 123 478` is not valid!

[luhn]: https://en.wikipedia.org/wiki/Luhn_algorithm
11 changes: 11 additions & 0 deletions exercises/practice/luhn/.docs/introduction.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
# Introduction

At the Global Verification Authority, you've just been entrusted with a critical assignment.
Across the city, from online purchases to secure logins, countless operations rely on the accuracy of numerical identifiers like credit card numbers, bank account numbers, transaction codes, and tracking IDs.
The Luhn algorithm is a simple checksum formula used to help identify mistyped numbers.

A batch of identifiers has just arrived on your desk.
All of them must pass the Luhn test to ensure they're legitimate.
If any fail, they'll be flagged as invalid, preventing mistakes such as incorrect transactions or failed account verifications.

Can you ensure this is done right? The integrity of many services depends on you.
2 changes: 1 addition & 1 deletion exercises/practice/meetup/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

Your task is to find the exact date of a meetup, given a month, year, weekday and week.

There are five week values to consider: `first`, `second`, `third`, `fourth`, `last`, `teenth`.
There are six week values to consider: `first`, `second`, `third`, `fourth`, `last`, `teenth`.

For example, you might be asked to find the date for the meetup on the first Monday in January 2018 (January 1, 2018).

Expand Down
Loading
Loading