-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
adds figs 06-10 of supplemental which had been missed?
- Loading branch information
1 parent
9d5d65d
commit d61f2fa
Showing
5 changed files
with
362 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
*.png | ||
*.data | ||
*.data.GYRE |
106 changes: 106 additions & 0 deletions
106
figures/supplemental/plot_fig06-07_transfer_and_surface.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
import os | ||
import numpy as np | ||
import matplotlib as mpl | ||
import matplotlib.pyplot as plt | ||
import h5py | ||
from scipy import interpolate | ||
from pathlib import Path | ||
from scipy.interpolate import interp1d | ||
|
||
import mesa_reader as mr | ||
plt.rcParams['font.family'] = ['Times New Roman'] | ||
plt.rcParams['mathtext.fontset'] = 'dejavusans' | ||
plt.rcParams['mathtext.fontset'] = 'cm' | ||
plt.rcParams['mathtext.rm'] = 'serif' | ||
|
||
wave_lum = lambda f, ell: (2.33e-11)*f**(-6.5)*np.sqrt(ell*(ell+1))**4 #f in Hz. | ||
fudge = 1 | ||
|
||
root_dir = '../../data/' | ||
output_file = '{}/dedalus/surface_signals/wave_propagation_power_spectra.h5'.format(root_dir) | ||
with h5py.File('../../dedalus/zams_15Msol_LMC/wave_generation/re10000/star/star_512+192_bounds0-2L_Re3.00e+04_de1.5_cutoff1.0e-10.h5', 'r') as lumf: | ||
s_nd = lumf['s_nd'][()] | ||
|
||
with h5py.File('../../dedalus/zams_15Msol_LMC/wave_propagation/nr256/star/star_256+192+64_bounds0-0.93R_Re1.00e+04_de1.5_cutoff1.0e-10.h5', 'r') as starf: | ||
s_nd = starf['s_nd'][()] | ||
L_nd = starf['L_nd'][()] | ||
m_nd = starf['m_nd'][()] | ||
tau_nd = starf['tau_nd'][()] | ||
energy_nd = L_nd**2 * m_nd / (tau_nd**2) | ||
lum_nd = energy_nd/tau_nd | ||
|
||
wave_lums_data = dict() | ||
with h5py.File('../../data/dedalus/wave_fluxes/zams_15Msol_LMC/re03200/wave_luminosities.h5', 'r') as lum_file: | ||
radius_str = '1.25' | ||
wave_lums_data['freqs'] = lum_file['cgs_freqs'][()] | ||
wave_lums_data['ells'] = lum_file['ells'][()].ravel() | ||
wave_lums_data['lum'] = lum_file['cgs_wave_luminosity(r={})'.format(radius_str)][0,:] | ||
|
||
|
||
for use_fit in [False, True]: | ||
with h5py.File(output_file, 'r') as out_f: | ||
freqs_hz = out_f['freqs'][()] / tau_nd #Hz | ||
freqs = freqs_hz * (24 * 60 * 60) #invday | ||
ells = out_f['ells'][()].ravel() | ||
s1 = np.sqrt(out_f['shell(s1_S2,r=R)'][0,:,:])*s_nd | ||
|
||
fig = plt.figure(figsize=(7.5, 4)) | ||
ax1 = fig.add_axes([0.04, 0.50, 0.32, 0.45]) | ||
ax2 = fig.add_axes([0.36, 0.50, 0.32, 0.45]) | ||
ax3 = fig.add_axes([0.68, 0.50, 0.32, 0.45]) | ||
ax4 = fig.add_axes([0.04, 0.05, 0.32, 0.45]) | ||
ax5 = fig.add_axes([0.36, 0.05, 0.32, 0.45]) | ||
ax6 = fig.add_axes([0.68, 0.05, 0.32, 0.45]) | ||
axs = [ax1, ax2, ax3, ax4, ax5, ax6] | ||
cmap = mpl.cm.plasma | ||
Lmax = 6 | ||
norm = mpl.colors.Normalize(vmin=1, vmax=Lmax) | ||
sm = mpl.cm.ScalarMappable(norm=norm, cmap=mpl.colors.ListedColormap(Dark2_5.mpl_colors[:Lmax])) | ||
|
||
for j in range(1,Lmax+1): | ||
axs[j-1].loglog(freqs, s1[:,ells==j], color='k', lw=1, label='simulation') | ||
|
||
with h5py.File('../../data/dedalus/transfer/transfer_ell{:03d}_eigenvalues.h5'.format(j), 'r') as ef: | ||
#transfer dimensionality is (in simulation units) entropy / sqrt(wave luminosity). | ||
transfer_func_root_lum = ef['transfer_root_lum'][()] * s_nd/np.sqrt(lum_nd) | ||
transfer_freq_hz = ef['om'][()]/(2*np.pi) / tau_nd #Hz | ||
transfer_freq = transfer_freq_hz * (24 * 60 * 60) #invday | ||
transfer_interp = lambda f: 10**interp1d(np.log10(transfer_freq_hz), np.log10(transfer_func_root_lum), bounds_error=False, fill_value=-1e99)(np.log10(f)) | ||
|
||
if use_fit: | ||
surface_s1_amplitude = fudge*np.abs(transfer_interp(transfer_freq_hz))*np.sqrt(wave_lum(transfer_freq_hz, j)) | ||
axs[j-1].loglog(transfer_freq, surface_s1_amplitude, c='orange', label='transfer solution (Eqn. 74 $L_w$)', lw=0.5) | ||
else: | ||
log_wave_lum = interp1d(np.log10(wave_lums_data['freqs']), np.log10(wave_lums_data['lum'][:,j == wave_lums_data['ells']].ravel())) | ||
data_wave_lum = lambda f: 10**(log_wave_lum(np.log10(f))) | ||
surface_s1_amplitude = fudge*np.abs(transfer_interp(transfer_freq_hz))*np.sqrt(data_wave_lum(transfer_freq_hz)) | ||
axs[j-1].loglog(transfer_freq, surface_s1_amplitude, c='orange', label='transfer solution (measured $L_w$)', lw=0.5) | ||
axs[j-1].text(0.96, 0.92, r'$\ell =$ ' + '{}'.format(j), transform=axs[j-1].transAxes, ha='right', va='center') | ||
|
||
for ax in axs: | ||
ax.set_xlim(7e-2,9e0) | ||
ax.set_ylim(1e-6, 1e2) | ||
ax.set_yticks((1e-5, 1e-3, 1e-1, 1e1)) | ||
for ax in [ax4, ax5, ax6]: | ||
ax.set_xlabel('frequency (d$^{-1}$)') | ||
for ax in [ax1, ax4]: | ||
ax.set_ylabel('$|s_1|$ (erg g$^{-1}$ K$^{-1}$)') | ||
for ax in [ax1, ax2, ax3]: | ||
# ax.set_ylim(2e-5,3e-1) | ||
ax.set_xticklabels(()) | ||
for ax in [ax2, ax3, ax5, ax6]: | ||
ax.set_yticklabels(()) | ||
ax.tick_params(axis="y",direction="in", which='both') | ||
|
||
for ax in [ax1, ax2, ax3]: | ||
ax.tick_params(axis="x", direction="in", which='both') | ||
|
||
|
||
ax1.legend(loc='lower left', frameon=False, borderaxespad=0.1, handletextpad=0.2, fontsize=8) | ||
if use_fit: | ||
plt.savefig('fig07_wavepropagation_transferVerification_fit.png', bbox_inches='tight', dpi=300) | ||
plt.savefig('fig07_wavepropagation_transferVerification_fit.pdf', bbox_inches='tight', dpi=300) | ||
else: | ||
plt.savefig('fig06_wavepropagation_transferVerification_raw.png', bbox_inches='tight', dpi=300) | ||
plt.savefig('fig06_wavepropagation_transferVerification_raw.pdf', bbox_inches='tight', dpi=300) | ||
plt.clf() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
""" | ||
Calculate transfer function to get surface response of convective forcing. | ||
Outputs a function which, when multiplied by sqrt(wave flux), gives you the surface response. | ||
""" | ||
import os | ||
import numpy as np | ||
import matplotlib as mpl | ||
import matplotlib.pyplot as plt | ||
import h5py | ||
from scipy import interpolate | ||
from pathlib import Path | ||
from scipy.interpolate import interp1d | ||
|
||
plt.rcParams['font.family'] = ['Times New Roman'] | ||
plt.rcParams['mathtext.fontset'] = 'dejavusans' | ||
plt.rcParams['mathtext.fontset'] = 'cm' | ||
plt.rcParams['mathtext.rm'] = 'serif' | ||
|
||
|
||
#Calculate transfer functions | ||
output_file = '../../data/dedalus/predictions/magnitude_spectra.h5' | ||
star_dirs = ['3msol', '15msol', '40msol'] | ||
Lmax = [3,3,3] | ||
out_f = h5py.File(output_file, 'r') | ||
freqs = out_f['frequencies'][()] * 24 * 60 * 60 #invday | ||
|
||
fig = plt.figure(figsize=(7.5, 5)) | ||
ax1_1 = fig.add_axes([0.05, 0.66, 0.28, 0.33]) | ||
ax2_1 = fig.add_axes([0.385, 0.66, 0.28, 0.33]) | ||
ax3_1 = fig.add_axes([0.72, 0.66, 0.28, 0.33]) | ||
ax1_2 = fig.add_axes([0.05, 0.33, 0.28, 0.33]) | ||
ax2_2 = fig.add_axes([0.385, 0.33, 0.28, 0.33]) | ||
ax3_2 = fig.add_axes([0.72, 0.33, 0.28, 0.33]) | ||
ax1_3 = fig.add_axes([0.05, 0.00, 0.28, 0.33]) | ||
ax2_3 = fig.add_axes([0.385, 0.00, 0.28, 0.33]) | ||
ax3_3 = fig.add_axes([0.72, 0.00, 0.28, 0.33]) | ||
#axs = [ax1, ax2, ax3, ax4, ax5, ax6] | ||
ax_rows = [[ax1_1, ax2_1, ax3_1], [ax1_2, ax2_2, ax3_2], [ax1_3, ax2_3, ax3_3]] | ||
|
||
|
||
for i, sdir in enumerate(star_dirs): | ||
transfer = out_f['{}_transfer_cube'.format(sdir)][()] | ||
|
||
for j in range(Lmax[i]): | ||
ax = ax_rows[j][i] | ||
ax.loglog(freqs, transfer[j,:], label='star', c='k', lw=0.75) | ||
ax.text(0.03, 0.93, r'$M = $ ' + '{}'.format(int(sdir.split('msol')[0])) + r'$M_{\odot}$', transform=ax.transAxes, ha='left', va='center', c='k') | ||
ax.text(0.03, 0.85, r'$\ell = $ ' + '{}'.format(j+1), transform=ax.transAxes, ha='left', va='center', c='k') | ||
ax.set_xlim(5e-2, 1e1) | ||
ax.set_ylim(1e-21, 1e-9) | ||
ax.set_yticks((1e-20, 1e-17, 1e-14, 1e-11)) | ||
|
||
if i == 0: | ||
ax.set_ylabel('Transfer') | ||
|
||
#Plot dedalus transfer | ||
with h5py.File('../../dedalus/zams_15Msol_LMC/wave_propagation/nr256/star/star_256+192+64_bounds0-0.93R_Re1.00e+04_de1.5_cutoff1.0e-10.h5', 'r') as starf: | ||
s_nd = starf['s_nd'][()] | ||
Cp = starf['Cp'][()]*s_nd | ||
L_nd = starf['L_nd'][()] | ||
m_nd = starf['m_nd'][()] | ||
tau_nd = starf['tau_nd'][()] | ||
energy_nd = L_nd**2 * m_nd / (tau_nd**2) | ||
lum_nd = energy_nd/tau_nd | ||
|
||
for ell in range(3): | ||
with h5py.File('../../data/dedalus/transfer/transfer_ell{:03d}_eigenvalues.h5'.format(ell+1), 'r') as ef: | ||
#transfer dimensionality is (in simulation units) entropy / sqrt(wave luminosity). | ||
transfer_func_root_lum = 1e6*ef['transfer_root_lum'][()] * s_nd/np.sqrt(lum_nd) / Cp #turns sqrt(L) -> 1e6 * s/cp | ||
transfer_freq_hz = ef['om'][()]/(2*np.pi) / tau_nd #Hz | ||
transfer_freq = transfer_freq_hz * (24 * 60 * 60) #invday | ||
ax_rows[ell][1].loglog(transfer_freq, transfer_func_root_lum, label='WP simulation', c='orange', lw=0.75) | ||
ax_rows[ell][1].set_yticks((1e-20, 1e-17, 1e-14, 1e-11)) | ||
|
||
|
||
for row in ax_rows[:2]: | ||
for ax in row: | ||
ax.set_xticklabels(()) | ||
ax.tick_params(axis='x', direction='in', which='both') | ||
for ax in ax_rows[-1]: | ||
ax.set_xlabel('$f$ (d$^{-1}$)') | ||
|
||
ax2_3.text(0.25, 0.1, 'star', ha='left', va='center', transform=ax2_3.transAxes) | ||
ax2_3.text(0.25, 0.6, 'WP sim', ha='left', va='center', c='orange', transform=ax2_3.transAxes) | ||
|
||
|
||
plt.savefig('fig08_transfer_functions.png', bbox_inches='tight', dpi=300) | ||
plt.savefig('fig08_transfer_functions.pdf', bbox_inches='tight', dpi=300) | ||
|
||
out_f.close() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
""" | ||
Calculate transfer function to get surface response of convective forcing. | ||
Outputs a function which, when multiplied by sqrt(wave flux), gives you the surface response. | ||
""" | ||
import os | ||
import numpy as np | ||
import matplotlib as mpl | ||
import matplotlib.pyplot as plt | ||
import h5py | ||
from scipy import interpolate | ||
from pathlib import Path | ||
from scipy.interpolate import interp1d | ||
plt.rcParams['font.family'] = ['Times New Roman'] | ||
plt.rcParams['mathtext.fontset'] = 'dejavusans' | ||
plt.rcParams['mathtext.fontset'] = 'cm' | ||
plt.rcParams['mathtext.rm'] = 'serif' | ||
|
||
|
||
#Calculate transfer functions | ||
output_file = '../../data/dedalus/predictions/magnitude_spectra.h5' | ||
|
||
|
||
star_dirs = ['3msol', '15msol', '40msol'] | ||
Lmax = [15, 15, 15] | ||
out_f = h5py.File(output_file, 'r') | ||
freqs = out_f['frequencies'][()] * 24 * 60 * 60 | ||
|
||
fig = plt.figure(figsize=(7.5, 7)) | ||
ax1 = fig.add_axes([0.00 , 0.60, 0.45, 0.30])#fig.add_subplot(1,2,1) | ||
ax2 = fig.add_axes([0.575, 0.60, 0.45, 0.30])#fig.add_subplot(1,2,2) | ||
ax3 = fig.add_axes([0.00 , 0.30, 0.45, 0.30])#fig.add_subplot(1,2,1) | ||
ax4 = fig.add_axes([0.575, 0.30, 0.45, 0.30])#fig.add_subplot(1,2,2) | ||
ax5 = fig.add_axes([0.00 , 0.00, 0.45, 0.30])#fig.add_subplot(1,2,1) | ||
ax6 = fig.add_axes([0.575, 0.00, 0.45, 0.30])#fig.add_subplot(1,2,2) | ||
cax1 = fig.add_axes([0.650, 0.975, 0.30, 0.025]) | ||
cax2 = fig.add_axes([0.075, 0.975, 0.30, 0.025]) | ||
axs = [ax1, ax2, ax3, ax4, ax5, ax6] | ||
ax_pairs = [[ax1, ax2], [ax3, ax4], [ax5, ax6]] | ||
|
||
even_cmap = mpl.cm.Purples_r | ||
odds_cmap = mpl.cm.Greens_r | ||
even_norm = mpl.colors.Normalize(vmin=2, vmax=24) | ||
odds_norm = mpl.colors.Normalize(vmin=1, vmax=23) | ||
even_sm = mpl.cm.ScalarMappable(norm=even_norm, cmap=even_cmap) | ||
odds_sm = mpl.cm.ScalarMappable(norm=odds_norm, cmap=odds_cmap) | ||
cb1 = plt.colorbar(even_sm, cax=cax1, orientation='horizontal', boundaries=[1, 3, 5, 7, 9, 11, 13, 15], ticks=[2, 4, 6, 8, 10, 12, 14, 16]) | ||
cb2 = plt.colorbar(odds_sm, cax=cax2, orientation='horizontal', ticks=[1, 3, 5, 7, 9, 11, 13, 15], boundaries=[0, 2, 4, 6, 8, 10, 12, 14, 16]) | ||
cb1.set_label(r'$\ell$ (even)') | ||
cb2.set_label(r'$\ell$ (odd)') | ||
|
||
|
||
|
||
|
||
for i, sdir in enumerate(star_dirs): | ||
magnitude_cube = out_f['{}_magnitude_cube'.format(sdir)][()] | ||
ell_list = np.arange(1, Lmax[i]+1) | ||
axl, axr = ax_pairs[i] | ||
|
||
for j in range(Lmax[i]): | ||
sum_mag = np.sqrt(np.sum(magnitude_cube[:Lmax[i]-j,:]**2, axis=0)) | ||
if (j+1) % 2 == 0: | ||
axl.loglog(freqs, magnitude_cube[j,:], color=even_sm.to_rgba(j+1), lw=0.5, zorder=2) | ||
axr.loglog(freqs, sum_mag, color=even_sm.to_rgba(Lmax[i]-j), lw=0.5, zorder=2) | ||
else: | ||
axl.loglog(freqs, magnitude_cube[j,:], color=odds_sm.to_rgba(j+1), lw=0.5, zorder=2) | ||
axr.loglog(freqs, sum_mag, color=odds_sm.to_rgba(Lmax[i]-j), lw=0.5, zorder=2) | ||
axr.loglog(freqs, np.sqrt(np.sum(magnitude_cube[:Lmax[i],:]**2, axis=0)), c='k', lw=0.25, zorder=2) | ||
axl.text(0.04, 0.93, r'$M = $ ' + '{}'.format(int(sdir.split('msol')[0])) + r'$M_{\odot}$', transform=axl.transAxes, ha='left', va='center') | ||
axr.text(0.96, 0.93, r'$M = $ ' + '{}'.format(int(sdir.split('msol')[0])) + r'$M_{\odot}$', transform=axr.transAxes, ha='right', va='center') | ||
|
||
for ax in axs: | ||
ax.set_xlim(3e-2, 3e1) | ||
|
||
for ax in [ax1, ax3, ax5]: | ||
ax.set_ylabel(r'$\Delta m_{\ell}\,(\mu\rm{mag})$') | ||
for ax in [ax2, ax4, ax6]: | ||
ax.set_ylabel(r'$\sqrt{\sum_{i}^{\ell}\Delta m_{i}^2}\,(\mu\rm{mag})$') | ||
|
||
for ax in [ax1, ax2]: | ||
ax.set_ylim(1e-7, 1e0) | ||
ax.set_xticklabels(()) | ||
ax.tick_params(axis="x", direction="in", which='both', zorder=5, top=True, bottom=False) | ||
for ax in [ax3, ax4]: | ||
ax.set_ylim(1e-6, 3e-1) | ||
ax.set_xticklabels(()) | ||
ax.tick_params(axis="x", direction="in", which='both', zorder=5, top=True, bottom=False) | ||
for ax in [ax5, ax6]: | ||
ax.set_ylim(3e-6, 3e0) | ||
ax.set_xlabel('frequency (d$^{-1}$)') | ||
plt.savefig('fig09_ellsums.png', bbox_inches='tight', dpi=300) | ||
plt.savefig('fig09_ellsums.pdf', bbox_inches='tight', dpi=300) | ||
# plt.clf() | ||
|
||
out_f.close() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
import os | ||
import numpy as np | ||
import matplotlib as mpl | ||
import matplotlib.pyplot as plt | ||
import h5py | ||
from scipy import interpolate | ||
from pathlib import Path | ||
from scipy.interpolate import interp1d | ||
plt.rcParams['font.family'] = ['Times New Roman'] | ||
plt.rcParams['mathtext.fontset'] = 'dejavusans' | ||
plt.rcParams['mathtext.fontset'] = 'cm' | ||
plt.rcParams['mathtext.rm'] = 'serif' | ||
|
||
|
||
#Calculate transfer functions | ||
output_file = '../../data/dedalus/predictions/magnitude_spectra.h5' | ||
|
||
def red_noise(nu, alpha0, nu_char, gamma=2): | ||
return alpha0/(1 + (nu/nu_char)**gamma) | ||
|
||
|
||
star_dirs = ['3msol', '15msol', '40msol'] | ||
Lmax = [15, 15, 15] | ||
alpha0 = [9e-3, 1.2e-1, 3e-1] | ||
alpha_latex = [ r'$9 \times 10^{-3}$ $\mu$mag',\ | ||
r'$0.12$ $\mu$mag',\ | ||
r'$0.3$ $\mu$mag'] | ||
nu_char = [2.6e-1, 0.16, 0.105] | ||
gamma = [4.5, 3.9, 4.3] | ||
out_f = h5py.File(output_file, 'r') | ||
freqs = out_f['frequencies'][()]*24*60*60 | ||
|
||
|
||
fig = plt.figure(figsize=(7.5, 2.5)) | ||
ax1 = fig.add_axes([0.050, 0.025, 0.275, 0.95]) | ||
ax2 = fig.add_axes([0.375, 0.025, 0.275, 0.95]) | ||
ax3 = fig.add_axes([0.700, 0.025, 0.275, 0.95]) | ||
axs = [ax1, ax2, ax3] | ||
|
||
for i, sdir in enumerate(star_dirs): | ||
plt.axes(axs[i]) | ||
magnitude_sum = out_f['{}_magnitude_sum'.format(sdir)][()] | ||
|
||
alpha_lbl = r'$\alpha_0 = $' + alpha_latex[i] | ||
nu_lbl = r'$\nu_{\rm char} = $' + '{:.2f}'.format(nu_char[i]) + ' d$^{-1}$' | ||
gamma_lbl = r'$\gamma = $' + '{:.1f}'.format(gamma[i]) | ||
label = '{}\n{}\n{}'.format(alpha_lbl, nu_lbl, gamma_lbl) | ||
plt.loglog(freqs, magnitude_sum, label=sdir, c='k') | ||
plt.loglog(freqs, red_noise(freqs, alpha0[i], nu_char[i], gamma=gamma[i]), label=label, c='orange') | ||
if i == 0: #3 | ||
plt.ylim(1e-5, 8e-2) | ||
plt.xlim(5e-2, 5e0) | ||
if i == 1: #15 | ||
plt.ylim(1e-4, 1) | ||
plt.xlim(3e-2, 2e0) | ||
if i == 2: #40 | ||
plt.ylim(1e-3, 2e0) | ||
plt.xlim(2e-2, 2e0) | ||
axs[i].text(0.01, 0.99, label, ha='left', va='top', transform=axs[i].transAxes) | ||
|
||
# plt.legend() | ||
plt.xlabel('frequency (d$^{-1}$)') | ||
if i == 0: | ||
plt.ylabel(r'$\Delta m$ ($\mu$mag)') | ||
fig.savefig('fig10_rednoise_fit.png', bbox_inches='tight', dpi=300) | ||
fig.savefig('fig10_rednoise_fit.pdf', bbox_inches='tight') | ||
|
||
out_f.close() |