forked from ray-project/ray
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[tune] horovod trainable (ray-project#10304)
- Loading branch information
1 parent
7068c63
commit 43a7a64
Showing
11 changed files
with
485 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
:orphan: | ||
|
||
horovod_simple | ||
~~~~~~~~~~~~~~ | ||
|
||
.. literalinclude:: /../../python/ray/tune/examples/horovod_simple.py |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
import torch | ||
import numpy as np | ||
from ray import tune | ||
from ray.tune.integration.horovod import DistributedTrainableCreator | ||
import time | ||
|
||
|
||
def sq(x): | ||
m2 = 1. | ||
m1 = -20. | ||
m0 = 50. | ||
return m2 * x * x + m1 * x + m0 | ||
|
||
|
||
def qu(x): | ||
m3 = 10. | ||
m2 = 5. | ||
m1 = -20. | ||
m0 = -5. | ||
return m3 * x * x * x + m2 * x * x + m1 * x + m0 | ||
|
||
|
||
class Net(torch.nn.Module): | ||
def __init__(self, mode="sq"): | ||
super(Net, self).__init__() | ||
|
||
if mode == "square": | ||
self.mode = 0 | ||
self.param = torch.nn.Parameter(torch.FloatTensor([1., -1.])) | ||
else: | ||
self.mode = 1 | ||
self.param = torch.nn.Parameter(torch.FloatTensor([1., -1., 1.])) | ||
|
||
def forward(self, x): | ||
if ~self.mode: | ||
return x * x + self.param[0] * x + self.param[1] | ||
else: | ||
return_val = 10 * x * x * x | ||
return_val += self.param[0] * x * x | ||
return_val += self.param[1] * x + self.param[2] | ||
return return_val | ||
|
||
|
||
def train(config): | ||
import torch | ||
import horovod.torch as hvd | ||
hvd.init() | ||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
net = Net(args.mode).to(device) | ||
optimizer = torch.optim.SGD( | ||
net.parameters(), | ||
lr=config["lr"], | ||
) | ||
optimizer = hvd.DistributedOptimizer(optimizer) | ||
|
||
num_steps = 5 | ||
print(hvd.size()) | ||
np.random.seed(1 + hvd.rank()) | ||
torch.manual_seed(1234) | ||
# To ensure consistent initialization across slots, | ||
hvd.broadcast_parameters(net.state_dict(), root_rank=0) | ||
hvd.broadcast_optimizer_state(optimizer, root_rank=0) | ||
|
||
start = time.time() | ||
for step in range(1, num_steps + 1): | ||
features = torch.Tensor( | ||
np.random.rand(1) * 2 * args.x_max - args.x_max).to(device) | ||
if args.mode == "square": | ||
labels = sq(features) | ||
else: | ||
labels = qu(features) | ||
optimizer.zero_grad() | ||
outputs = net(features) | ||
loss = torch.nn.MSELoss()(outputs, labels) | ||
loss.backward() | ||
|
||
optimizer.step() | ||
time.sleep(0.1) | ||
tune.report(loss=loss.item()) | ||
total = time.time() - start | ||
print(f"Took {total:0.3f} s. Avg: {total / num_steps:0.3f} s.") | ||
|
||
|
||
if __name__ == "__main__": | ||
import argparse | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--mode", type=str, default="square", choices=["square", "cubic"]) | ||
parser.add_argument( | ||
"--learning_rate", type=float, default=0.1, dest="learning_rate") | ||
parser.add_argument("--x_max", type=float, default=1., dest="x_max") | ||
parser.add_argument("--gpu", action="store_true") | ||
parser.add_argument( | ||
"--smoke-test", | ||
action="store_true", | ||
help=("Finish quickly for testing.")) | ||
parser.add_argument("--hosts-per-trial", type=int, default=1) | ||
parser.add_argument("--slots-per-host", type=int, default=2) | ||
args = parser.parse_args() | ||
|
||
# import ray | ||
# ray.init(address="auto") # assumes ray is started with ray up | ||
|
||
horovod_trainable = DistributedTrainableCreator( | ||
train, | ||
use_gpu=args.gpu, | ||
num_hosts=args.hosts_per_trial, | ||
num_slots=args.slots_per_host, | ||
replicate_pem=False) | ||
analysis = tune.run( | ||
horovod_trainable, | ||
config={"lr": tune.uniform(0.1, 1)}, | ||
num_samples=2 if args.smoke_test else 10, | ||
fail_fast=True) | ||
config = analysis.get_best_config(metric="loss", mode="min") |
Oops, something went wrong.