Skip to content

Commit

Permalink
Commit of 3/25
Browse files Browse the repository at this point in the history
  • Loading branch information
emikoroe committed Mar 26, 2014
1 parent 0ca92be commit 39142fa
Show file tree
Hide file tree
Showing 6 changed files with 151 additions and 43 deletions.
3 changes: 2 additions & 1 deletion GWASsteps-concordance.tex
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
\Sconcordance{concordance:GWASsteps.tex:GWASsteps.Rnw:%
1 35 1 50 0 4 1 5 0 7 1 6 0 6 1 6 0 7 1 5 0 7 1 5 0 5 1 5 0 6 1 4 %
0 26 1 6 0 7 1 5 0 12 1 5 0 10 1 3 0 4 1 5 0 10 1 5 0 7 1 5 0 56 1 %
6 0 11 1 5 0 10 1 5 0 11 1 5 0 35 1 10 0 18 1 7 0 21 1 8 0 5 1}
6 0 11 1 5 0 10 1 5 0 14 1 5 0 14 1 4 0 12 1 7 0 13 1 5 0 33 1 10 %
0 18 1 7 0 21 1 8 0 5 1}
64 changes: 52 additions & 12 deletions GWASsteps.Rnw
Original file line number Diff line number Diff line change
Expand Up @@ -203,7 +203,7 @@ GWAS<-function(rsNumber){
print(rsNumber)
tempSNP <- data.frame(FamID=row.names(genoNum),snp=genoNum[,rsNumber])
dat <- merge(phenoSub,tempSNP,by.x="FamID",by.y="FamID",all.x=TRUE)
a <- summary(glm(fldl.wk0 ~ age + sex + raceth + pc1 + pc2 + pc3 + pc4 + pc5 + pc6 + pc7 + pc8 + pc9 + pc10 + snp, family = gaussian, data=dat))
a <- summary(glm(fldl_wk0 ~ age + sex + raceth + pc1 + pc2 + pc3 + pc4 + pc5 + pc6 + pc7 + pc8 + pc9 + pc10 + snp, family = gaussian, data=dat))
out <- as.matrix(a$coefficients['snp',])
out
}
Expand Down Expand Up @@ -232,25 +232,65 @@ fldl.wk0.p3 <- data.frame(t(out))

\subsection{Summarizing and Visualization}

We now have a new dataset that we write to a file that contains rsNumber, Estimate, Standard Error, Zvalues and Pvalues
**Put in Merge stuff


We now have a new dataset that contains rsNumbers, Estimates, Standard Errors, Zvalues and Pvalues.

<<data, eval=FALSE>>=
names(fldl.wk0.p3) <- c("Estimate","SE","Zvalue","Pvalue")
fldl.wk0.p3$rsNumber <- rsVec
fldl.wk0.p3 <- as.matrix(fldl.wk0.p3)
write.csv(fldl_wk0_p3,"/home/ramoser/fldl.wk0.p3")
names(fldl_wk0_p3) <- c("Estimate","SE","Zvalue","Pvalue")
fldl_wk0_p3$rsNumber <- rsVec
fldl_wk0_p3 <- as.matrix(fldl_wk0_p3)
write.csv(fldl_wk0_p3,"/home/ramoser/fldl-wk0_p3")
@

Below is a function that will create a Manhattan Plot. A Manhattan plot vizualizes where chromosome numbers are displayed along the $x$-axis an the negative logarithm of the association P-value for each SNP on the Y-axis. This is useful when trying to determine if the association between the SNP and the chromosome is significant.\\
Our new dataset contains only part of the variables needed to accurately summarize the data. We need to be able to determine which SNP cooresponds to which chromosome, gene and type. To do so we load in a dataset that contains this information for the RS numbers and merge with our existing dataset.

* is chromosome the right word? Or homolog or haplotype?
\\
<<merging, eval= FALSE>>=
baseline1 <- read.csv("fldl_wk0_p3.txt", header = T)
baseline1 <- baseline1[, -1]
merge1 <- read.table("2013-08-12-AnnotationSNPsToGenes.txt", sep="\t")
merge1$rsNumber <- merge1$snp
merge1 <- merge1[, c(1:5,7)]
baseline2 <- merge(baseline1, merge1, by = "rsNumber")
@

In this case, we are only interested in looking at the following gene types: exonic, intronic, splicing, UTR3, UTR5, downstream, exonic;splicing, and upstream. Thus, we keep only these types and sort by P-values. \\

*Why only these? Is this standard, should I describe each of these gene types? I feel like there is a bit more ``meat" needed here.

<<Types to keep, eval=FALSE>>=
#Keeping Gene Types:exonic, intronic, splicing, UTR3, UTR5, downstream, exonic;splicing, upstream
*Before doing manhattan plot, should we put in the merging files information: New RS numbers, Keeping Gene Types:exonic, intronic, splicing, UTR3, UTR5, downstream, exonic;splicing, upstream, and extracting only P-vals $< 5*10^-5$. I'm asking because it is only after this merging that we create a table that will allow for the manhattan plot. Or am I mistaken, are we merly showing the plot as an example.
keep1 <- c("exonic", "intronic", "splicing", "UTR3", "UTR5", "downstream", "exonic;splicing", "upstream")
baseline3 <- baseline2[is.element(el=baseline2$type, set=keep1), ]
baseline3 <- baseline3[order(baseline3$Pvalue),]
@

In this example we are interested in P-values $< 5*10^{-5}$. Thus, we create a subset of SNPs with those P-values and summarize them in a table. Furthermore, we drop ``chr" to report just chromosome numbers and save the resulting table.

<<pvals, eval=FALSE>>=
baseTable <- baseline3[baseline3$Pvalue <= 5*10^(-5), ]
baseline3$chr<-substring(baseline3$chr, 4,5)
baseline3$chr<-as.numeric(as.character(baseline3$chr))
write.csv(baseline3,"baseline.txt")
xtable(baseTable)
@


Now that we have a complete dataset with SNPs, chromosome, gene type, etc., we can create a Manhattan Plot to view the data. Below is a function that will create a Manhattan Plot. A Manhattan plot vizualizes where chromosome numbers are displayed along the $x$-axis an the negative logarithm of the association P-value for each SNP on the Y-axis. This is useful when trying to determine if the association between the SNP and the chromosome is significant.\\

* is chromosome the right word? Or homolog or haplotype?
*Greg, I can't get this code to actually work. Am I missing something?

<<Manhattan Plot function, eval=FALSE>>=
one=read.table("baseline_table.RData",header=T,sep="\t")
one=read.csv("baseline.txt", header=T)
position=one$Pos/1000000
chr=one$Chr
nsnp=as.numeric(table(chr))[1:22]
Expand All @@ -276,7 +316,7 @@ for(CHR in 2:22){
}
@

Now, we can creat the Manhattan Plot
Now, we can creat the Manhattan Plot.

<<plotting the manhattan, , eval=FALSE>>=
bitmap(file="manhattan.jpeg",type="jpeg",width=10,height=6,res=432,pointsize=8)
Expand Down
47 changes: 29 additions & 18 deletions GWASsteps.log
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
This is pdfTeX, Version 3.1415926-2.4-1.40.13 (MiKTeX 2.9) (preloaded format=pdflatex 2013.3.13) 24 MAR 2014 18:31
This is pdfTeX, Version 3.1415926-2.4-1.40.13 (MiKTeX 2.9) (preloaded format=pdflatex 2013.3.13) 25 MAR 2014 20:40
entering extended mode
**GWASsteps.tex
(D:\Users\Emily\Documents\School\RA\GWASPaper\GWASsteps.tex
Expand Down Expand Up @@ -394,7 +394,7 @@ UE[][])[][]


Overfull \hbox (6.89565pt too wide) in paragraph at lines 328--328
[] []\OT1/cmtt/m/n/10.95 a[] []<-[] []summary[][]([][]glm[][](fldl.wk0[] []~
[] []\OT1/cmtt/m/n/10.95 a[] []<-[] []summary[][]([][]glm[][](fldl_wk0[] []~
[] []age[] []+[] []sex[] []+[] []raceth[] []+[] []pc1[] []+[] []pc2[] []+[] []p
c3[] []+[] []pc4[] []+[][]
[]
Expand All @@ -409,50 +409,61 @@ Overfull \hbox (35.63908pt too wide) in paragraph at lines 329--329
[6]
Package color Info: Redefining color shadecolor on input line 346.
Package color Info: Redefining color shadecolor on input line 357.
Package color Info: Redefining color shadecolor on input line 374.
Package color Info: Redefining color shadecolor on input line 377.
Package color Info: Redefining color shadecolor on input line 391.
[7]
Underfull \hbox (badness 10000) in paragraph at lines 406--407

Underfull \hbox (badness 10000) in paragraph at lines 385--386
[]

Package color Info: Redefining color shadecolor on input line 411.

Overfull \hbox (104.62334pt too wide) in paragraph at lines 416--416
[][]\OT1/cmtt/m/n/10.95 keep1[] []<-[] []c[][]([][]"exonic"[][],[] []"intronic"
[][],[] []"splicing"[][],[] []"UTR3"[][],[] []"UTR5"[][],[] []"downstream"[][],
[] []"exonic;splicing"[][],[][]
[]

[7]
Underfull \hbox (badness 10000) in paragraph at lines 387--389
Package color Info: Redefining color shadecolor on input line 428.

Underfull \hbox (badness 10000) in paragraph at lines 444--445

[]

Package color Info: Redefining color shadecolor on input line 394.
[8]
Package color Info: Redefining color shadecolor on input line 450.

Overfull \hbox (6.89565pt too wide) in paragraph at lines 413--413
Overfull \hbox (6.89565pt too wide) in paragraph at lines 469--469
[] []\OT1/cmtt/m/n/10.95 POS[(total.prev[] []+[] []1[][])[][]:[][](total.pre
v[] []+[] []nsnp[CHR])][] []=[] []start[] []+[] []position[chr[] []==[][]
[]

Package color Info: Redefining color shadecolor on input line 433.
[8]
Overfull \hbox (35.63908pt too wide) in paragraph at lines 435--435
Package color Info: Redefining color shadecolor on input line 489.
[9]
Overfull \hbox (35.63908pt too wide) in paragraph at lines 491--491
[][]\OT1/cmtt/m/n/10.95 bitmap[][]([][]file[] []=[] []"manhattan.jpeg"[][],[] [
]type[] []=[] []"jpeg"[][],[] []width[] []=[] []10[][],[] []height[] []=[] []6[
][],[] []res[] []=[] []432[][],[][]
[]


Overfull \hbox (35.63908pt too wide) in paragraph at lines 438--438
Overfull \hbox (35.63908pt too wide) in paragraph at lines 494--494
[][]\OT1/cmtt/m/n/10.95 plot[][](POS,[] []-[][]log10[][](PVAL),[] []pch[] []=[]
[]20[][],[] []col[] []= COL,[] []xlab[] []=[] []""[][],[] []ylab[] []=[] []"-l
og10(p-value)"[][],[][]
[]

[9]
Package color Info: Redefining color shadecolor on input line 473.
[10] (D:\Users\Emily\Documents\School\RA\GWASPaper\GWASsteps.aux) )
[10]
Package color Info: Redefining color shadecolor on input line 529.
[11] (D:\Users\Emily\Documents\School\RA\GWASPaper\GWASsteps.aux) )
Here is how much of TeX's memory you used:
2942 strings out of 493921
38374 string characters out of 3144876
103526 words of memory out of 3000000
6187 multiletter control sequences out of 15000+200000
11064 words of font info for 42 fonts, out of 3000000 for 9000
841 hyphenation exceptions out of 8191
27i,12n,43p,1007b,283s stack positions out of 5000i,500n,10000p,200000b,50000s
27i,11n,43p,1007b,283s stack positions out of 5000i,500n,10000p,200000b,50000s
<C:/Program
Files (x86)/MiKTeX 2.9/fonts/type1/public/amsfonts/cm/cmbx10.pfb><C:/Program F
iles (x86)/MiKTeX 2.9/fonts/type1/public/amsfonts/cm/cmbx12.pfb><C:/Program Fil
Expand All @@ -467,9 +478,9 @@ TeX 2.9/fonts/type1/public/amsfonts/cm/cmr10.pfb><C:/Program Files (x86)/MiKTeX
/fonts/type1/public/amsfonts/cm/cmsy10.pfb><C:/Program Files (x86)/MiKTeX 2.9/f
onts/type1/public/amsfonts/cm/cmsy8.pfb><C:/Program Files (x86)/MiKTeX 2.9/font
s/type1/public/amsfonts/cm/cmtt10.pfb>
Output written on GWASsteps.pdf (10 pages, 188484 bytes).
Output written on GWASsteps.pdf (11 pages, 192365 bytes).
PDF statistics:
87 PDF objects out of 1000 (max. 8388607)
90 PDF objects out of 1000 (max. 8388607)
0 named destinations out of 1000 (max. 500000)
1 words of extra memory for PDF output out of 10000 (max. 10000000)

Expand Down
Binary file modified GWASsteps.pdf
Binary file not shown.
Binary file modified GWASsteps.synctex.gz
Binary file not shown.
80 changes: 68 additions & 12 deletions GWASsteps.tex
Original file line number Diff line number Diff line change
Expand Up @@ -325,7 +325,7 @@ \subsection{Fitting the Model}
\hlkwd{print}\hlstd{(rsNumber)}
\hlstd{tempSNP} \hlkwb{<-} \hlkwd{data.frame}\hlstd{(}\hlkwc{FamID} \hlstd{=} \hlkwd{row.names}\hlstd{(genoNum),} \hlkwc{snp} \hlstd{= genoNum[, rsNumber])}
\hlstd{dat} \hlkwb{<-} \hlkwd{merge}\hlstd{(phenoSub, tempSNP,} \hlkwc{by.x} \hlstd{=} \hlstr{"FamID"}\hlstd{,} \hlkwc{by.y} \hlstd{=} \hlstr{"FamID"}\hlstd{,} \hlkwc{all.x} \hlstd{=} \hlnum{TRUE}\hlstd{)}
\hlstd{a} \hlkwb{<-} \hlkwd{summary}\hlstd{(}\hlkwd{glm}\hlstd{(fldl.wk0} \hlopt{~} \hlstd{age} \hlopt{+} \hlstd{sex} \hlopt{+} \hlstd{raceth} \hlopt{+} \hlstd{pc1} \hlopt{+} \hlstd{pc2} \hlopt{+} \hlstd{pc3} \hlopt{+} \hlstd{pc4} \hlopt{+}
\hlstd{a} \hlkwb{<-} \hlkwd{summary}\hlstd{(}\hlkwd{glm}\hlstd{(fldl_wk0} \hlopt{~} \hlstd{age} \hlopt{+} \hlstd{sex} \hlopt{+} \hlstd{raceth} \hlopt{+} \hlstd{pc1} \hlopt{+} \hlstd{pc2} \hlopt{+} \hlstd{pc3} \hlopt{+} \hlstd{pc4} \hlopt{+}
\hlstd{pc5} \hlopt{+} \hlstd{pc6} \hlopt{+} \hlstd{pc7} \hlopt{+} \hlstd{pc8} \hlopt{+} \hlstd{pc9} \hlopt{+} \hlstd{pc10} \hlopt{+} \hlstd{snp,} \hlkwc{family} \hlstd{= gaussian,} \hlkwc{data} \hlstd{= dat))}
\hlstd{out} \hlkwb{<-} \hlkwd{as.matrix}\hlstd{(a}\hlopt{$}\hlstd{coefficients[}\hlstr{"snp"}\hlstd{, ])}
\hlstd{out}
Expand Down Expand Up @@ -368,32 +368,88 @@ \subsubsection{Running a Parallel Analysis}

\subsection{Summarizing and Visualization}

We now have a new dataset that we write to a file that contains rsNumber, Estimate, Standard Error, Zvalues and Pvalues
**Put in Merge stuff


We now have a new dataset that contains rsNumbers, Estimates, Standard Errors, Zvalues and Pvalues.

\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{alltt}
\hlkwd{names}\hlstd{(fldl.wk0.p3)} \hlkwb{<-} \hlkwd{c}\hlstd{(}\hlstr{"Estimate"}\hlstd{,} \hlstr{"SE"}\hlstd{,} \hlstr{"Zvalue"}\hlstd{,} \hlstr{"Pvalue"}\hlstd{)}
\hlstd{fldl.wk0.p3}\hlopt{$}\hlstd{rsNumber} \hlkwb{<-} \hlstd{rsVec}
\hlstd{fldl.wk0.p3} \hlkwb{<-} \hlkwd{as.matrix}\hlstd{(fldl.wk0.p3)}
\hlkwd{write.csv}\hlstd{(fldl_wk0_p3,} \hlstr{"/home/ramoser/fldl.wk0.p3"}\hlstd{)}
\hlkwd{names}\hlstd{(fldl_wk0_p3)} \hlkwb{<-} \hlkwd{c}\hlstd{(}\hlstr{"Estimate"}\hlstd{,} \hlstr{"SE"}\hlstd{,} \hlstr{"Zvalue"}\hlstd{,} \hlstr{"Pvalue"}\hlstd{)}
\hlstd{fldl_wk0_p3}\hlopt{$}\hlstd{rsNumber} \hlkwb{<-} \hlstd{rsVec}
\hlstd{fldl_wk0_p3} \hlkwb{<-} \hlkwd{as.matrix}\hlstd{(fldl_wk0_p3)}
\hlkwd{write.csv}\hlstd{(fldl_wk0_p3,} \hlstr{"/home/ramoser/fldl-wk0_p3"}\hlstd{)}
\end{alltt}
\end{kframe}
\end{knitrout}


Below is a function that will create a Manhattan Plot. A Manhattan plot vizualizes where chromosome numbers are displayed along the $x$-axis an the negative logarithm of the association P-value for each SNP on the Y-axis. This is useful when trying to determine if the association between the SNP and the chromosome is significant.\\
Our new dataset contains only part of the variables needed to accurately summarize the data. We need to be able to determine which SNP cooresponds to which chromosome, gene and type. To do so we load in a dataset that contains this information for the RS numbers and merge with our existing dataset.

* is chromosome the right word? Or homolog or haplotype?
\\
\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{alltt}
\hlstd{baseline1} \hlkwb{<-} \hlkwd{read.csv}\hlstd{(}\hlstr{"fldl_wk0_p3.txt"}\hlstd{,} \hlkwc{header} \hlstd{= T)}
\hlstd{baseline1} \hlkwb{<-} \hlstd{baseline1[,} \hlopt{-}\hlnum{1}\hlstd{]}
\hlstd{merge1} \hlkwb{<-} \hlkwd{read.table}\hlstd{(}\hlstr{"2013-08-12-AnnotationSNPsToGenes.txt"}\hlstd{,} \hlkwc{sep} \hlstd{=} \hlstr{"\textbackslash{}t"}\hlstd{)}
\hlstd{merge1}\hlopt{$}\hlstd{rsNumber} \hlkwb{<-} \hlstd{merge1}\hlopt{$}\hlstd{snp}
\hlstd{merge1} \hlkwb{<-} \hlstd{merge1[,} \hlkwd{c}\hlstd{(}\hlnum{1}\hlopt{:}\hlnum{5}\hlstd{,} \hlnum{7}\hlstd{)]}
*Before doing manhattan plot, should we put in the merging files information: New RS numbers, Keeping Gene Types:exonic, intronic, splicing, UTR3, UTR5, downstream, exonic;splicing, upstream, and extracting only P-vals $< 5*10^-5$. I'm asking because it is only after this merging that we create a table that will allow for the manhattan plot. Or am I mistaken, are we merly showing the plot as an example.
\hlstd{baseline2} \hlkwb{<-} \hlkwd{merge}\hlstd{(baseline1, merge1,} \hlkwc{by} \hlstd{=} \hlstr{"rsNumber"}\hlstd{)}
\end{alltt}
\end{kframe}
\end{knitrout}


In this case, we are only interested in looking at the following gene types: exonic, intronic, splicing, UTR3, UTR5, downstream, exonic;splicing, and upstream. Thus, we keep only these types and sort by P-values. \\

*Why only these? Is this standard, should I describe each of these gene types? I feel like there is a bit more ``meat" needed here.

\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{alltt}
\hlcom{# Keeping Gene Types:exonic, intronic, splicing, UTR3, UTR5, downstream,}
\hlcom{# exonic;splicing, upstream}
\hlstd{keep1} \hlkwb{<-} \hlkwd{c}\hlstd{(}\hlstr{"exonic"}\hlstd{,} \hlstr{"intronic"}\hlstd{,} \hlstr{"splicing"}\hlstd{,} \hlstr{"UTR3"}\hlstd{,} \hlstr{"UTR5"}\hlstd{,} \hlstr{"downstream"}\hlstd{,} \hlstr{"exonic;splicing"}\hlstd{,}
\hlstr{"upstream"}\hlstd{)}
\hlstd{baseline3} \hlkwb{<-} \hlstd{baseline2[}\hlkwd{is.element}\hlstd{(}\hlkwc{el} \hlstd{= baseline2}\hlopt{$}\hlstd{type,} \hlkwc{set} \hlstd{= keep1), ]}
\hlstd{baseline3} \hlkwb{<-} \hlstd{baseline3[}\hlkwd{order}\hlstd{(baseline3}\hlopt{$}\hlstd{Pvalue), ]}
\end{alltt}
\end{kframe}
\end{knitrout}


In this example we are interested in P-values $< 5*10^{-5}$. Thus, we create a subset of SNPs with those P-values and summarize them in a table. Furthermore, we drop ``chr" to report just chromosome numbers and save the resulting table.

\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{alltt}
\hlstd{baseTable} \hlkwb{<-} \hlstd{baseline3[baseline3}\hlopt{$}\hlstd{Pvalue} \hlopt{<=} \hlnum{5} \hlopt{*} \hlnum{10}\hlopt{^}\hlstd{(}\hlopt{-}\hlnum{5}\hlstd{), ]}
\hlstd{baseline3}\hlopt{$}\hlstd{chr} \hlkwb{<-} \hlkwd{substring}\hlstd{(baseline3}\hlopt{$}\hlstd{chr,} \hlnum{4}\hlstd{,} \hlnum{5}\hlstd{)}
\hlstd{baseline3}\hlopt{$}\hlstd{chr} \hlkwb{<-} \hlkwd{as.numeric}\hlstd{(}\hlkwd{as.character}\hlstd{(baseline3}\hlopt{$}\hlstd{chr))}
\hlkwd{write.csv}\hlstd{(baseline3,} \hlstr{"baseline.txt"}\hlstd{)}
\hlkwd{xtable}\hlstd{(baseTable)}
\end{alltt}
\end{kframe}
\end{knitrout}



Now that we have a complete dataset with SNPs, chromosome, gene type, etc., we can create a Manhattan Plot to view the data. Below is a function that will create a Manhattan Plot. A Manhattan plot vizualizes where chromosome numbers are displayed along the $x$-axis an the negative logarithm of the association P-value for each SNP on the Y-axis. This is useful when trying to determine if the association between the SNP and the chromosome is significant.\\

* is chromosome the right word? Or homolog or haplotype?
*Greg, I can't get this code to actually work. Am I missing something?

\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{alltt}
\hlstd{one} \hlkwb{=} \hlkwd{read.table}\hlstd{(}\hlstr{"baseline_table.RData"}\hlstd{,} \hlkwc{header} \hlstd{= T,} \hlkwc{sep} \hlstd{=} \hlstr{"\textbackslash{}t"}\hlstd{)}
\hlstd{one} \hlkwb{=} \hlkwd{read.csv}\hlstd{(}\hlstr{"baseline.txt"}\hlstd{,} \hlkwc{header} \hlstd{= T)}
\hlstd{position} \hlkwb{=} \hlstd{one}\hlopt{$}\hlstd{Pos}\hlopt{/}\hlnum{1e+06}
\hlstd{chr} \hlkwb{=} \hlstd{one}\hlopt{$}\hlstd{Chr}
\hlstd{nsnp} \hlkwb{=} \hlkwd{as.numeric}\hlstd{(}\hlkwd{table}\hlstd{(chr))[}\hlnum{1}\hlopt{:}\hlnum{22}\hlstd{]}
Expand Down Expand Up @@ -427,7 +483,7 @@ \subsection{Summarizing and Visualization}
\end{knitrout}


Now, we can creat the Manhattan Plot
Now, we can creat the Manhattan Plot.

\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
Expand Down

0 comments on commit 39142fa

Please sign in to comment.