This source depends on keras
, sklearn
,pandas
, numpy
,matplotlib
python packages. The following [docker] (https://www.docker.com/) image includes all the installation and environment.
$ docker pull hossain/gdocker
If you use singularity in high performance computing system (HPC) at the University of Arizona you can load and pull singularity image as follows:
$ module load singularity
$ singularity pull --name gdocker.simg docker://hossain/gdocker
Note that if all of the required packages are installed in your local computer then you don't need docker and singularity. To know more about singularity please visit (https://singularity.lbl.gov/quickstart).
.
├── dataset
│ ├── datasetname
│ │ ├──train
│ │ │ ├──class1
│ │ │ ├──class2
....
│ │ ├──valid
│ │ │ ├──class1
│ │ │ ├──class2
....
│ │ ├──test
│ │ │ ├──class1
│ │ │ ├──class2
....
.
├──outputs
│ ├── expname
│ │ ├──drawing # for chart/learning curve processing
│ │ ├──models # for storing best train model
│ │ ├──output # training log
│ │ ├──st_out # standard console output
1 'ResNet50',
2 'MobileNet',
3 'MobileNetV2',
4 'NASNetMobile',
5 'NASNetLarge',
6 'VGG16',
7 'VGG19',
8 'Xception',
9 'InceptionResNetV2',
10 'DenseNet121',
11 'DenseNet201'
$ python3 multi_application_train.py [modelNumber] [expname] [datasetname][list_of_classes_comma_sep]
$ python3 multi_application_train.py 1 binary esample nonsym,sym
$ python3 multi_deploy.py [modelNumber] [expname] [datasetname] [class_list_comma_sep]
$ python3 multi_deploy.py 8 multi hvttraindata H,R,T,V
$ python multi_deploy.py --help
usage: multi_deploy.py [-h] [-ver] [-nocol] [-q | -v]
MODEL_NUMBER EXP_NAME DATASET_NAME CLASSES
mlsymmetric
positional arguments:
MODEL_NUMBER Model number
EXP_NAME Name of experiment directory
DATASET_NAME Dataset directory
CLASSES List of classes
optional arguments:
-h, --help show this help message and exit
-ver, --version Display version information and dependencies.
-nocol, --nocolor Disables color in terminal
-q, --quiet Print quiet
-v, --verbose Print verbose
Iqbal Hossain, Felice De Luca, and Stephen Kobourov University of Arizona
@article{de2019symmetry,
title={Symmetry Detection and Classification in Drawings of Graphs},
author={De Luca, Felice and Hossain, Md Iqbal and Kobourov, Stephen},
journal={arXiv preprint arXiv:1907.01004},
year={2019}
}