Skip to content

Development material for BAIT509 - Business Applications of Machine Learning

License

Notifications You must be signed in to change notification settings

emilymistick/BAIT509

 
 

Repository files navigation

BAIT509 - Business Applications of Machine Learning

This is the home page for BAIT 509 at The University of British Columbia, displaying the 2019 iteration of the course. The syllabus can be found at sauder_syllabus.pdf, but anything listed in on this website will take precedence.

Github repository underpinning this website: vincenzocoia/BAIT509

Learning Objectives

By the end of the course, students should be expected to be able to:

  • Explain what ML is, in the context of errors and model functions.
  • Understand and implement the machine learning paradigms in both R and python for a variety of ML methods.
  • Identify a data table based on a machine learning problem
  • Understand the types of error, and how this influences model choice/goodness
  • Build and justify a ML model.
  • Understand how ML fits into the greater scope of solving a business problem

Teaching Team

At your service!

Name Position
Vincenzo Coia Instructor
Hossameldin Mohammed TA
Emily Mistick TA
Arjun Baghela TA

Class Meetings

Details about class meetings will appear here as they become available. Readings are optional, but should be useful.

# Topic Recommended Readings
cm01; worksheet (.R) Intro to the course, tools, and ML ISLR Section 2.1
cm02; worksheet (.html / .Rmd) Irreducible and Reducible Error ISLR Section 2.2 (you can stop in 2.2.3 once you get to the "The Bayes Classifier" subsection).
cm03; model fitting in python (.html / .ipynb); model fitting in R (.html / .Rmd) Local methods ISLR's "K-Nearest Neighbors" section (in Section 2.2.3) on page 39; and Section 7.6 ("Local Regression").
cm04; cross-validation example (.R) Model Selection ISLR Section 5.1; we'll be touching on 6.1, 6.2, and 6.3 from ISLR, but only briefly.
cm05; CART example (.R) Classification and Regression Trees ISLR Section 8.1
cm06; model function example (.R) Refining business questions This blog post by datapine does a good job motivating the problem of asking good questions. This blog post by altexsoft does a good job outlining the use of supervised learning in business.
cm07; random forest example (.R) Ensembles ISLR Section 8.2
cm08; worksheet (.R) Beyond the mean and mode
cm09 (worksheet a continuation of yesterday's) SVM Section 9.1, 9.2, 9.4 in ISLR. The details aren't all that important. 9.3 is quite advanced, but I'll be discussing the main idea behind it in class.
cm10 SVM and cross validation worksheet (.ipynb) SVM continuation; wrapup; alternatives to accuracy Alternative measures, and ROC

Office Hours

Want to talk about the course outside of lecture? Let's talk during these dedicated times.

Teaching Member When Where
Arjun Tuesdays (Jan 15 - Feb 5) 13:00-14:00 ESB 1045 3174
Vincenzo Wednesdays (Jan 16 - Feb 6) 10:30-11:30 ESB 3174
Emily Wednesdays (Jan 16 - Feb 6) 15:00-16:00 13:00-14:00 ESB 1045 3174
Hossam Friday, January 11, 15:00-16:00 ESB 1045
Hossam Friday, January 18, 16:00-17:00 ESB 1045
Hossam Friday, January 25, 15:00-16:00 ESB 3174
Hossam Friday, February 1, 15:00-16:00 ESB 1045

Assessments

Links to assessments will be made available when they are ready. The deadlines listed here are the official ones, and take precendence over the ones listed in the sauder syllabus.

Assessment Due Weight
Assignment 1 (.ipynb) January 12 17 19 at 18:00 20%
Assignment 2 January 26 at 18:00 20%
Assignment 3 February 2 at 18:00 20%
Final Project February 8 at 23:59 30%
Participation January 31 at 18:00 10%

Please submit everything to UBC Canvas.

Annotated Resources

About

Development material for BAIT509 - Business Applications of Machine Learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • HTML 99.7%
  • Other 0.3%