This repository has been archived by the owner on Feb 20, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
✨ Minor fixes to AdamWCD, new AdamCD
- Loading branch information
1 parent
e7ec832
commit 35c0249
Showing
6 changed files
with
198 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,8 @@ | ||
from pyromaniac.optim.pyro.adamwcd import AdamWCD | ||
from pyromaniac.optim.pyro.adamcd import AdamCD | ||
|
||
|
||
__all__ = [ | ||
"AdamWCD", | ||
"AdamCD", | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
# Copyright (c) 2017- Uber Technologies, Inc. | ||
# Copyright (c) 2020- AI-CPS@UniTS | ||
# Copyright (c) 2020- Emanuele Ballarin <emanuele@ballarin.cc> | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from pyro.optim.optim import PyroOptim | ||
from pyromaniac.optim.torch import AdamCD as pt_AdamCD | ||
|
||
|
||
def AdamCD(optim_args): | ||
""" | ||
Wraps :class:`pyromaniac.optim.adamwcd.AdamCD` with :class:`~pyro.optim.optim.PyroOptim`. | ||
""" | ||
return PyroOptim(pt_AdamCD, optim_args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,5 @@ | ||
from .adamwcd import AdamWCD | ||
from .adamcd import AdamCD | ||
|
||
del adamwcd | ||
del adamcd |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
# Copyright (c) 2016- Facebook, Inc | ||
# Copyright (c) 2017- Uber Technologies, Inc. | ||
# Copyright (c) 2020- AI-CPS@UniTS | ||
# Copyright (c) 2020- Emanuele Ballarin <emanuele@ballarin.cc> | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import math | ||
import torch | ||
from torch.optim.optimizer import Optimizer, required | ||
|
||
|
||
class AdamCD(Optimizer): | ||
r"""Implements AdamCD algorithm. | ||
It has been proposed in `Adam: A Method for Stochastic Optimization`_. | ||
AdamCD further introduces gradient clipping and epoch-wise learning rate decay, similarly to the `Uber Pyro ClippedAdam variant of Adam`_. | ||
Arguments: | ||
params (iterable): iterable of parameters to optimize or dicts defining | ||
parameter groups | ||
lr (float, optional): learning rate (default: 1e-3) | ||
betas (Tuple[float, float], optional): coefficients used for computing | ||
running averages of gradient and its square (default: (0.9, 0.999)) | ||
eps (float, optional): term added to the denominator to improve | ||
numerical stability (default: 1e-8) | ||
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | ||
amsgrad (boolean, optional): whether to use the AMSGrad variant of this | ||
algorithm from the paper `On the Convergence of Adam and Beyond`_ | ||
(default: False) | ||
clip_norm (float, optional): magnitude of norm to which gradients are clipped (default: 10.0) | ||
lrd (float, optional): rate at which learning rate decays (default: 1.0) | ||
lrd_epoch (int, optional): number of optimizer steps every which to perform one learning rate decay step (default: 1) | ||
.. _Adam\: A Method for Stochastic Optimization: | ||
https://arxiv.org/abs/1412.6980 | ||
.. _Uber Pyro ClippedAdam variant of Adam: | ||
http://docs.pyro.ai/en/latest/_modules/pyro/optim/clipped_adam.html | ||
.. _On the Convergence of Adam and Beyond: | ||
https://openreview.net/forum?id=ryQu7f-RZ | ||
""" | ||
|
||
def __init__( | ||
self, | ||
params, | ||
lr=1e-3, | ||
betas=(0.9, 0.999), | ||
eps=1e-8, | ||
weight_decay=0, | ||
amsgrad=False, | ||
clip_norm=10.0, | ||
lrd=1.0, | ||
lrd_epoch: int = 1, | ||
): | ||
if not 0.0 <= lr: | ||
raise ValueError("Invalid learning rate: {}".format(lr)) | ||
if not 0.0 <= eps: | ||
raise ValueError("Invalid epsilon value: {}".format(eps)) | ||
if not 0.0 <= betas[0] < 1.0: | ||
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | ||
if not 0.0 <= betas[1] < 1.0: | ||
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | ||
if not 0.0 <= weight_decay: | ||
raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) | ||
if not 0.0 <= clip_norm: | ||
raise ValueError("Invalid clip_norm value: {}".format(clip_norm)) | ||
if not 0.0 <= lrd: | ||
raise ValueError("Invalid lrd value: {}".format(lrd)) | ||
if not 1 <= lrd_epoch: | ||
raise ValueError("Invalid lrd_epoch value: {}".format(lrd_epoch)) | ||
defaults = dict( | ||
lr=lr, | ||
betas=betas, | ||
eps=eps, | ||
weight_decay=weight_decay, | ||
amsgrad=amsgrad, | ||
clip_norm=clip_norm, | ||
lrd=lrd, | ||
lrd_epoch=lrd_epoch, | ||
) | ||
self.lrd_epoch_persist = lrd_epoch | ||
super(AdamCD, self).__init__(params, defaults) | ||
|
||
def __setstate__(self, state): | ||
super(AdamCD, self).__setstate__(state) | ||
for group in self.param_groups: | ||
group.setdefault("amsgrad", False) | ||
|
||
@torch.no_grad() | ||
def step(self, closure=None): | ||
"""Performs a single optimization step. | ||
Arguments: | ||
closure (callable, optional): A closure that reevaluates the model | ||
and returns the loss. | ||
""" | ||
loss = None | ||
if closure is not None: | ||
with torch.enable_grad(): | ||
loss = closure() | ||
|
||
for group in self.param_groups: | ||
|
||
# Apply a decay factor to learning rate, but only every lrd_epoch steps | ||
group["lrd_epoch"] -= 1 | ||
if group["lrd_epoch"] == 0: | ||
group["lr"] *= group["lrd"] | ||
group["lrd_epoch"] = self.lrd_epoch_persist | ||
|
||
for p in group["params"]: | ||
if p.grad is None: | ||
continue | ||
grad = p.grad | ||
|
||
# Clamp the gradient | ||
grad.clamp_(-group["clip_norm"], group["clip_norm"]) | ||
|
||
if grad.is_sparse: | ||
raise RuntimeError( | ||
"AdamCD does not support sparse gradients, please consider SparseAdam instead" | ||
) | ||
amsgrad = group["amsgrad"] | ||
|
||
state = self.state[p] | ||
|
||
# State initialization | ||
if len(state) == 0: | ||
state["step"] = 0 | ||
# Exponential moving average of gradient values | ||
state["exp_avg"] = torch.zeros_like( | ||
p, memory_format=torch.preserve_format | ||
) | ||
# Exponential moving average of squared gradient values | ||
state["exp_avg_sq"] = torch.zeros_like( | ||
p, memory_format=torch.preserve_format | ||
) | ||
if amsgrad: | ||
# Maintains max of all exp. moving avg. of sq. grad. values | ||
state["max_exp_avg_sq"] = torch.zeros_like( | ||
p, memory_format=torch.preserve_format | ||
) | ||
|
||
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] | ||
if amsgrad: | ||
max_exp_avg_sq = state["max_exp_avg_sq"] | ||
beta1, beta2 = group["betas"] | ||
|
||
state["step"] += 1 | ||
bias_correction1 = 1 - beta1 ** state["step"] | ||
bias_correction2 = 1 - beta2 ** state["step"] | ||
|
||
if group["weight_decay"] != 0: | ||
grad = grad.add(p, alpha=group["weight_decay"]) | ||
|
||
# Decay the first and second moment running average coefficient | ||
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) | ||
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) | ||
if amsgrad: | ||
# Maintains the maximum of all 2nd moment running avg. till now | ||
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) | ||
# Use the max. for normalizing running avg. of gradient | ||
denom = (max_exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_( | ||
group["eps"] | ||
) | ||
else: | ||
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_( | ||
group["eps"] | ||
) | ||
|
||
step_size = group["lr"] / bias_correction1 | ||
|
||
p.addcdiv_(exp_avg, denom, value=-step_size) | ||
|
||
return loss |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters