Skip to content

REST tests for normalize agg #89629

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Aug 26, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ _mean_::

[4.63, 4.63, 9.63, 49.63, 9.63, 9.63, 19.63]

_zscore_::
_z-score_::
This method normalizes such that each value represents how far it is from the mean relative to the standard deviation

x' = (x - mean_x) / stdev_x
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -48,32 +48,251 @@ setup:
user: "d"

---
"Basic Search":
rescale_0_1:
- skip:
features: close_to

- do:
search:
index: foo
body:
size: 0
aggs:
users_by_day:
date_histogram:
field: timestamp
calendar_interval: day
aggs:
percent_of_total_users:
normalize:
buckets_path: _count
method: rescale_0_1

- length: { aggregations.users_by_day.buckets: 3 }
- match: { aggregations.users_by_day.buckets.0.key_as_string: "2017-01-01T00:00:00.000Z" }
- match: { aggregations.users_by_day.buckets.0.doc_count: 3 }
- close_to: { aggregations.users_by_day.buckets.0.percent_of_total_users.value: { value: 1.0, error: 0.05 } }
- match: { aggregations.users_by_day.buckets.1.key_as_string: "2017-01-02T00:00:00.000Z" }
- match: { aggregations.users_by_day.buckets.1.doc_count: 2 }
- close_to: { aggregations.users_by_day.buckets.1.percent_of_total_users.value: { value: 0.5, error: 0.05 }}
- match: { aggregations.users_by_day.buckets.2.key_as_string: "2017-01-03T00:00:00.000Z" }
- match: { aggregations.users_by_day.buckets.2.doc_count: 1 }
- close_to: { aggregations.users_by_day.buckets.2.percent_of_total_users.value: { value: 0.0, error: 0.05 }}

---
rescale_0_100:
- skip:
features: close_to

- do:
search:
index: foo
body:
size: 0
aggs:
users_by_day:
date_histogram:
field: timestamp
calendar_interval: day
aggs:
percent_of_total_users:
normalize:
buckets_path: _count
method: rescale_0_100

- length: { aggregations.users_by_day.buckets: 3 }
- match: { aggregations.users_by_day.buckets.0.key_as_string: "2017-01-01T00:00:00.000Z" }
- match: { aggregations.users_by_day.buckets.0.doc_count: 3 }
- close_to: { aggregations.users_by_day.buckets.0.percent_of_total_users.value: { value: 100, error: 0.5 }}
- match: { aggregations.users_by_day.buckets.1.key_as_string: "2017-01-02T00:00:00.000Z" }
- match: { aggregations.users_by_day.buckets.1.doc_count: 2 }
- close_to: { aggregations.users_by_day.buckets.1.percent_of_total_users.value: { value: 50, error: 0.5 }}
- match: { aggregations.users_by_day.buckets.2.key_as_string: "2017-01-03T00:00:00.000Z" }
- match: { aggregations.users_by_day.buckets.2.doc_count: 1 }
- close_to: { aggregations.users_by_day.buckets.2.percent_of_total_users.value: { value: 0, error: 0.5 }}

---
percent_of_sum:
- skip:
features: close_to

- do:
search:
index: foo
body:
size: 0
aggs:
users_by_day:
date_histogram:
field: timestamp
calendar_interval: day
aggs:
percent_of_total_users:
normalize:
buckets_path: _count
method: percent_of_sum

- length: { aggregations.users_by_day.buckets: 3 }
- match: { aggregations.users_by_day.buckets.0.key_as_string: "2017-01-01T00:00:00.000Z" }
- match: { aggregations.users_by_day.buckets.0.doc_count: 3 }
- close_to: { aggregations.users_by_day.buckets.0.percent_of_total_users.value: { value: 0.5, error: 0.05 }}
- match: { aggregations.users_by_day.buckets.1.key_as_string: "2017-01-02T00:00:00.000Z" }
- match: { aggregations.users_by_day.buckets.1.doc_count: 2 }
- close_to: { aggregations.users_by_day.buckets.1.percent_of_total_users.value: { value: 0.3, error: 0.05 }}
- match: { aggregations.users_by_day.buckets.2.key_as_string: "2017-01-03T00:00:00.000Z" }
- match: { aggregations.users_by_day.buckets.2.doc_count: 1 }
- close_to: { aggregations.users_by_day.buckets.2.percent_of_total_users.value: { value: 0.2, error: 0.05 }}

---
mean:
- skip:
features: close_to

- do:
search:
index: foo
body:
size: 0
aggs:
users_by_day:
date_histogram:
field: timestamp
calendar_interval: day
aggs:
percent_of_total_users:
normalize:
buckets_path: _count
method: mean

- length: { aggregations.users_by_day.buckets: 3 }
- match: { aggregations.users_by_day.buckets.0.key_as_string: "2017-01-01T00:00:00.000Z" }
- match: { aggregations.users_by_day.buckets.0.doc_count: 3 }
- close_to: { aggregations.users_by_day.buckets.0.percent_of_total_users.value: { value: 0.5, error: 0.05 }}
- match: { aggregations.users_by_day.buckets.1.key_as_string: "2017-01-02T00:00:00.000Z" }
- match: { aggregations.users_by_day.buckets.1.doc_count: 2 }
- close_to: { aggregations.users_by_day.buckets.1.percent_of_total_users.value: { value: 0.0, error: 0.05 }}
- match: { aggregations.users_by_day.buckets.2.key_as_string: "2017-01-03T00:00:00.000Z" }
- match: { aggregations.users_by_day.buckets.2.doc_count: 1 }
- close_to: { aggregations.users_by_day.buckets.2.percent_of_total_users.value: { value: -0.5, error: 0.05 }}

---
zscore:
- skip:
features: close_to

- do:
search:
index: "foo"
index: foo
body:
size: 0
aggs:
users_by_day:
date_histogram:
field: "timestamp"
calendar_interval: "day"
field: timestamp
calendar_interval: day
aggs:
percent_of_total_users:
normalize:
buckets_path: "_count"
method: "percent_of_sum"
buckets_path: _count
method: z-score

- length: { aggregations.users_by_day.buckets: 3 }
- match: { aggregations.users_by_day.buckets.0.key_as_string: "2017-01-01T00:00:00.000Z" }
- match: { aggregations.users_by_day.buckets.0.doc_count: 3 }
- match: { aggregations.users_by_day.buckets.0.percent_of_total_users.value: 0.5 }
- close_to: { aggregations.users_by_day.buckets.0.percent_of_total_users.value: { value: 1.2, error: 0.05 }}
- match: { aggregations.users_by_day.buckets.1.key_as_string: "2017-01-02T00:00:00.000Z" }
- match: { aggregations.users_by_day.buckets.1.doc_count: 2 }
- match: { aggregations.users_by_day.buckets.1.percent_of_total_users.value: 0.3333333333333333 }
- close_to: { aggregations.users_by_day.buckets.1.percent_of_total_users.value: { value: 0.0, error: 0.05 }}
- match: { aggregations.users_by_day.buckets.2.key_as_string: "2017-01-03T00:00:00.000Z" }
- match: { aggregations.users_by_day.buckets.2.doc_count: 1 }
- match: { aggregations.users_by_day.buckets.2.percent_of_total_users.value: 0.16666666666666666 }
- close_to: { aggregations.users_by_day.buckets.2.percent_of_total_users.value: { value: -1.22, error: 0.05 }}

---
softmax:
- skip:
features: close_to

- do:
search:
index: foo
body:
size: 0
aggs:
users_by_day:
date_histogram:
field: timestamp
calendar_interval: day
aggs:
percent_of_total_users:
normalize:
buckets_path: _count
method: softmax

- length: { aggregations.users_by_day.buckets: 3 }
- match: { aggregations.users_by_day.buckets.0.key_as_string: "2017-01-01T00:00:00.000Z" }
- match: { aggregations.users_by_day.buckets.0.doc_count: 3 }
- close_to: { aggregations.users_by_day.buckets.0.percent_of_total_users.value: { value: 0.67, error: 0.05 }}
- match: { aggregations.users_by_day.buckets.1.key_as_string: "2017-01-02T00:00:00.000Z" }
- match: { aggregations.users_by_day.buckets.1.doc_count: 2 }
- close_to: { aggregations.users_by_day.buckets.1.percent_of_total_users.value: { value: 0.24, error: 0.05 }}
- match: { aggregations.users_by_day.buckets.2.key_as_string: "2017-01-03T00:00:00.000Z" }
- match: { aggregations.users_by_day.buckets.2.doc_count: 1 }
- close_to: { aggregations.users_by_day.buckets.2.percent_of_total_users.value: { value: 0.09, error: 0.05 }}

---
format:
- skip:
features: close_to

- do:
search:
index: foo
body:
size: 0
aggs:
users_by_day:
date_histogram:
field: timestamp
calendar_interval: day
aggs:
percent_of_total_users:
normalize:
buckets_path: _count
method: percent_of_sum
format: 00.00%

- length: { aggregations.users_by_day.buckets: 3 }
- match: { aggregations.users_by_day.buckets.0.key_as_string: "2017-01-01T00:00:00.000Z" }
- match: { aggregations.users_by_day.buckets.0.doc_count: 3 }
- close_to: { aggregations.users_by_day.buckets.0.percent_of_total_users.value: { value: 0.5, error: 0.05 }}
- match: { aggregations.users_by_day.buckets.0.percent_of_total_users.value_as_string: 50.00% }
- match: { aggregations.users_by_day.buckets.1.key_as_string: "2017-01-02T00:00:00.000Z" }
- match: { aggregations.users_by_day.buckets.1.doc_count: 2 }
- close_to: { aggregations.users_by_day.buckets.1.percent_of_total_users.value: { value: 0.3, error: 0.05 }}
- match: { aggregations.users_by_day.buckets.1.percent_of_total_users.value_as_string: 33.33% }
- match: { aggregations.users_by_day.buckets.2.key_as_string: "2017-01-03T00:00:00.000Z" }
- match: { aggregations.users_by_day.buckets.2.doc_count: 1 }
- close_to: { aggregations.users_by_day.buckets.2.percent_of_total_users.value: { value: 0.2, error: 0.05 }}
- match: { aggregations.users_by_day.buckets.2.percent_of_total_users.value_as_string: 16.67% }

---
bad path:
- skip:
features: close_to

- do:
catch: /No aggregation found for path \[badpath\]/
search:
index: foo
body:
size: 0
aggs:
users_by_day:
date_histogram:
field: timestamp
calendar_interval: day
aggs:
percent_of_total_users:
normalize:
buckets_path: badpath
method: rescale_0_1