Science-grounded autonomous ideation system with self-improving mechanisms.
- Triple Generator - Explorer, Refiner, Contrarian modes
- 8-Dimension Scoring - Novelty, Feasibility, Market, Complexity, Scenario, Contrarian, Surprise, Cross-Domain
- DARLING Learning - Diversity-aware reward calculation
- Atomic Novelty (NovAScore) - 0.94 accuracy claim-level novelty detection
- Verification Gates - Quality checkpoints
- Reflection Learning - Self-improving pattern extraction
- Plateau Escape - Avoid local optima
- Web Search Integration - Real-time market intelligence via Perplexity API
- Interview Context Integration - Enriched ideation using universal-interview skill
- Batch Mode - Generate multiple ideas per API call (5x faster)
- Copy folder to
~/.claude/skills/universal-ideation-v3/ - Install dependencies:
pip install -r requirements.txt
- Invoke with:
/universal-ideation-v3 "your domain"
For semantic similarity features:
pip install qdrant-client sentence-transformers
docker run -p 6333:6333 qdrant/qdrant/universal-ideation-v3 "e-commerce innovation"
/universal-ideation-v3 "sustainable opportunity in Malaysia"
/universal-ideation-v3 "ai start up innovation"
/universal-ideation-v3 "sustainable packaging innovation"cd ~/.claude/skills/universal-ideation-v3
python3 scripts/run_v3.py "your domain" --verboseRequires Anthropic API key in ~/.env:
CLAUDE_API_KEY=sk-ant-xxxxxOptional: Add Perplexity API key for web search:
PERPLEXITY_API_KEY=pplx-xxxxxRun with full LLM integration + storage:
cd ~/.claude/skills/universal-ideation-v3
python3 scripts/llm_runner.py "your domain" -i 30 -m 30 -vThis mode:
- Uses Claude API for idea generation and scoring
- Stores ideas in SQLite database
- Stores embeddings in Qdrant for semantic search
- Exports full v3.2 statistics (DARLING learnings, atomic novelty, etc.)
Enable real-time market context from Perplexity:
python3 scripts/llm_runner.py "protein beverages" -i 10 -m 5 -w -vThis fetches:
- Domain trends - Current market developments
- Market gaps - Underserved opportunities
- Emerging tech - Relevant technologies
- Consumer insights - Behavior patterns
The market context is injected into idea generation prompts for more grounded, trend-aware ideas.
Enrich ideation with structured interview context from the universal-interview skill:
# First, run an interview to build context
cd ~/.claude/skills/universal-interview
python3 scripts/interview_runner.py "sustainable protein beverages"
# Then use the context in ideation
cd ~/.claude/skills/universal-ideation-v3
python3 scripts/llm_runner.py "protein beverages" --context-id [ID] -b -n 10 -v
# Or use interactive context selection
python3 scripts/llm_runner.py "protein beverages" -c -b -n 10 -vThe interview context provides:
- Problem Space - Pain points and user needs
- Constraints - Budget, timeline, regulations
- Assumptions - Hidden beliefs to challenge
- Intent - Strategic goals
- Preferences - What excites vs. bores
- Existing Solutions - Competitors and gaps
- Resources - Assets and capabilities
Both skills share the database at ~/.claude/data/ideation.db.
Generate multiple ideas per API call:
# Generate 100 ideas in batch mode
python3 scripts/llm_runner.py "your domain" -b -n 100 -s 10 -v
# With web search
python3 scripts/llm_runner.py "your domain" -b -n 100 -w -v
# With interview context
python3 scripts/llm_runner.py "your domain" -b -n 100 --context-id [ID] -v| Mode | Ideas/min | 100 ideas |
|---|---|---|
| Standard | ~1 | ~100 min |
| Batch | ~5 | ~20 min |
| Flag | Default | Description |
|---|---|---|
-i, --iterations |
15 | Max iterations (standard mode) |
-m, --minutes |
15 | Max duration (standard mode) |
-t, --threshold |
60.0 | Acceptance score |
-v, --verbose |
false | Show progress |
-w, --web-search |
false | Enable Perplexity web search |
-b, --batch |
false | Enable batch mode |
-n, --target |
100 | Target ideas (batch mode) |
-s, --batch-size |
10 | Ideas per API call (batch mode) |
-c, --context |
false | Interactive interview context selection |
--context-id |
- | Specific interview context ID |
| Flag | Default | Description |
|---|---|---|
-i, --iterations |
30 | Max iterations |
-m, --minutes |
30 | Max duration |
-t, --threshold |
65.0 | Acceptance score |
-v, --verbose |
false | Show progress |
--use-llm |
false | Enable Anthropic API for real idea generation |
--llm-model |
claude-sonnet-4-20250514 | Model to use for generation |
--initiative |
- | Load enriched_domain from interview database by ID |
--test |
false | Stub mode for testing |
Load context directly from interview database:
# Run ideation with interview context
python3 scripts/run_v3.py --initiative e87f16de-61d0-427c-aa21-2cc7b6d3274d --use-llm -v
# Or with manual domain
python3 scripts/run_v3.py "your domain" --use-llm -vThe --initiative flag queries ~/.claude/data/ideation.db for the enriched_domain generated by universal-interview.
- Location:
~/.claude/data/ideation.db(shared with universal-interview) - Tables: ideas, sessions, learnings, initiatives, interview_responses
- Persists all accepted ideas with scores
- Location:
localhost:6333 - Collection:
universal_ideas(384-dim embeddings) - Enables semantic similarity search
Start Qdrant:
docker run -d -p 6333:6333 qdrant/qdrantResults saved to:
output/ideation_YYYYMMDD_HHMMSS.json- Full session exportdata/ideation.db- SQLite persistence- Qdrant vectors - Semantic embeddings (if enabled)
Backup your ideas database (SQLite + Qdrant vectors):
cd ~/.claude/skills/universal-ideation-v3
# Full backup (SQLite + Qdrant + JSON)
python3 scripts/backup.py backup
# Named backup
python3 scripts/backup.py backup -n "my_backup"
# SQLite only (skip Qdrant)
python3 scripts/backup.py backup --no-qdrant
# View statistics
python3 scripts/backup.py stats
# List all backups
python3 scripts/backup.py list
# Export all ideas to JSON
python3 scripts/backup.py export -o my_ideas.json
# Restore full backup (SQLite + Qdrant)
python3 scripts/backup.py restore backup_file.db
# Restore SQLite only
python3 scripts/backup.py restore backup_file.db --no-qdrant| File | Contents |
|---|---|
*_backup.db |
SQLite database (ideas, sessions, learnings) |
*_qdrant.snapshot |
Qdrant vector embeddings |
*_backup.json |
Full JSON export |
Backups saved to backups/ folder.
python -m pytest tests/ -vuniversal-ideation-v3/
├── SKILL.md # Skill definition
├── README.md # This file
├── requirements.txt # Dependencies
├── scripts/
│ ├── run_v3.py # Main orchestrator (stub mode)
│ ├── llm_runner.py # LLM-integrated runner (full mode)
│ ├── backup.py # Database backup tool
│ ├── generators/ # Triple Generator
│ ├── gates/ # Quality gates
│ ├── evaluators/ # Cognitive diversity
│ ├── learning/ # DARLING + reflection
│ ├── escape/ # Plateau escape
│ ├── novelty/ # Atomic novelty
│ ├── search/ # Web search (Perplexity)
│ └── storage/ # Persistence (SQLite + Qdrant)
├── tests/ # 74 unit tests
├── data/ # Runtime SQLite
├── backups/ # Database backups
└── output/ # Generated results
MIT
v3.3 (2026-01-01) - LLM integration for run_v3.py, --initiative flag for interview database integration
