Skip to content

Scientific research on quantitative information dynamics

License

Notifications You must be signed in to change notification settings

eaprelsky/infodynamics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

21 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🧠 Information Dynamics: Mathematical Theory of Information Flow in Cognitive Systems

Python 3.11+ License: MIT Status: Research

Information Dynamics is a research project developing a mathematical theory of information flow through cognitive systems using electrical circuit analogies.

🎯 Overview

The project creates a formal mathematical model that describes:

  • How information spreads through cognitive agents
  • Why some information is perceived better than others
  • How to optimize information processes in education, interfaces, and communications

Key Insight: Information follows laws analogous to electricity - there's "voltage," "resistance," "conductivity," and "capacity."

⚑ Core Concepts

Electricity Information Dynamics Description
Voltage (V) Info Voltage (U_info) Quality and influence of information
Current (I) Info Flow (V_info) Speed of information spread
Resistance (R) Info Resistance (R_info) Cognitive barriers to perception
Conductivity (G) Info Conductivity (G_info) Ability to perceive information
Inductance (L) Info Inductance (L_info) Inertia and delays in perception
Capacitance (C) Info Capacity (C_info) Ability to accumulate knowledge

Ohm's Law for Information:

V_info = U_info / Z_info
where Z_info = R_info + jωL_info + 1/(jωC_info)

πŸš€ Quick Start

Installation

# Clone repository
git clone https://github.com/your-repo/infodynamics.git
cd infodynamics

# Create conda environment
conda env create -f environment.yml
conda activate info-dynamics

# Or via pip
pip install -r requirements.txt

Basic Usage

from infodynamics.models import calculate_conductivity, calculate_voltage

# Calculate user's information conductivity
user_profile = {
    "working_memory": 7.2,
    "attention_selectivity": 0.8,
    "motivation": 0.9,
    "expertise": 0.6
}
G_info = calculate_conductivity(user_profile)

# Calculate content's information voltage
content = {
    "factual_density": 0.8,
    "semantic_quality": 0.9,
    "credibility": 0.95,
    "timeliness": 0.7
}
U_info = calculate_voltage(content)

# Predict perception speed
flow_rate = U_info / (1/G_info)  # V_info = U_info * G_info
print(f"Information flow rate: {flow_rate:.2f}")

πŸ“ Project Structure

infodynamics/
β”œβ”€β”€ πŸ“„ README.md                    # This file
β”œβ”€β”€ πŸ“„ SETUP.md                     # Detailed installation
β”œβ”€β”€ πŸ“„ requirements.txt             # Python dependencies
β”œβ”€β”€ πŸ“„ environment.yml              # Conda environment
β”œβ”€β”€ πŸ“„ backlog.md                   # Project roadmap and tasks
β”œβ”€β”€ 
β”œβ”€β”€ πŸ“ infodynamics/                # Main Python package
β”‚   β”œβ”€β”€ models/                     # Mathematical models (G, R, L, C)
β”‚   β”œβ”€β”€ utils/                      # Utilities and helper functions
β”‚   └── validation/                 # Validation tools
β”œβ”€β”€ 
β”œβ”€β”€ πŸ“ scripts/                     # Data and setup scripts
β”‚   └── data_download/              # Open dataset downloads
β”œβ”€β”€ 
β”œβ”€β”€ πŸ“ tools/                       # Ready-to-use tools
β”‚   β”œβ”€β”€ data_utils/                 # Data utilities
β”‚   └── cli.py                      # Command-line interface
β”œβ”€β”€ 
β”œβ”€β”€ πŸ“ demos/                       # Usage examples
β”‚   └── notebooks/                  # Jupyter notebook demos (development)
β”œβ”€β”€ 
β”œβ”€β”€ πŸ“ analysis/                    # Analysis and validation
β”‚   β”œβ”€β”€ validation/                 # Empirical validation on data
β”‚   β”œβ”€β”€ figures/                    # Charts and visualizations
β”‚   └── notebooks/                  # Research notebooks (development)
β”œβ”€β”€ 
β”œβ”€β”€ πŸ“ theory/                      # Theoretical models
β”œβ”€β”€ πŸ“ research/                    # Literature reviews
β”œβ”€β”€ πŸ“ experiments/                 # Experimental designs
β”œβ”€β”€ πŸ“ diagrams/                    # Visual documentation and flowcharts
β”œβ”€β”€ πŸ“ docs/                        # Documentation
β”œβ”€β”€ πŸ“ paper/                       # Scientific publications
β”œβ”€β”€ πŸ“ planning/                    # Project planning and methodology
└── πŸ“ data/                        # Validation data

πŸ§ͺ Theory Validation

The project includes empirical validation on open data:

  • Stanford Self-Regulation Dataset - cognitive tasks
  • HCP Connectome Project - working memory and attention
  • MOOC Learning Analytics - educational processes
  • Social Media Datasets - viral information spread
# Run validation on Stanford data
python analysis/validation/stanford_real_validation.py

# Generate comprehensive validation report
python tools/cli.py --generate-report

πŸ“Š Results

Key validated predictions:

  • βœ… G_info correlates with working memory (r=0.64, p<0.001)
  • βœ… R_info predicts learning difficulties (RΒ²=0.41)
  • βœ… L_info relates to resistance to change (r=0.58, p<0.001)
  • βœ… Ohm's Law explains 67% of variance in perception speed

🎯 Practical Applications

πŸŽ“ Education

  • Adaptive learning: Personalize content based on learner's G_info
  • Cognitive load optimization: Balance R_info levels
  • Difficulty prediction: Early identification of learning problems

πŸ’» UX/UI Design

  • Information architecture: Optimize content U_info
  • Interface personalization: Adapt to user's G_info
  • A/B testing: Predict design effectiveness

πŸ“± Social Media

  • Content moderation: Detect information overload
  • Misinformation combat: Analyze post U_info
  • Virality prediction: Forecast content spread

🏒 Corporate Communications

  • Document flow optimization: Reduce R_info
  • Training effectiveness: Maximize learning efficiency
  • Change management: Control organizational L_info

πŸ“š Documentation

πŸ“– Scientific Publications

Core theoretical works:

Empirical studies:

πŸ”¬ Interactive Diagrams

🀝 Contributing

  1. Researchers: Use models in your research
  2. Developers: Integrate into your products
  3. Students: Study and experiment
  4. Organizations: Apply to practical problems
# Fork repository
# Create feature branch
# Add your experiments/improvements
# Create pull request

πŸ“„ License

MIT License - see LICENSE file for details.

πŸ“§ Contact

  • GitHub Issues: For questions and bugs
  • Email: [your email] for collaborations
  • ResearchGate: [your profile] for scientific discussions

"Information Dynamics: Making the invisible patterns of human cognition visible and quantifiable"

Project Status: πŸ”¬ Active research phase
Version: 1.0.0-alpha

Last Updated: November 2025

About

Scientific research on quantitative information dynamics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published