Skip to content

dxlabskku/FVTTS_code

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FVTTS : Face-based Voice Synthesis for Text-to-Speech

This repository is the official implementation of FVTTS. Our demo page is released in https://dxlabskku.github.io/FVTTS/

Preprocessing

1. Prepare your data into 'data'. Build your dataset by setting up the following directory structure:

data
├── trainval                   
|   ├── speaker1        # i.e. tMSU6k5SWXg
|   |   ├── text1.txt           # text file of first utterance  (i.e. 50001.txt)
|   |   └── video1.mp4          # video file of first utterance (i.e. 50001.mp4)
|   |   ├── text2.txt           # text file of second utterance  (i.e. 50002.txt)
|   |   └── video2.mp4          # video file of second utterance (i.e. 50002.mp4)
|   |   |
|   |   |
|   ├── speaker2
|   |   
├── test

2. Prepare shape_predictor_68_face_landmarks.dat for facial landmark detection.

wget   http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 

bunzip2 /content/shape_predictor_68_face_landmarks.dat.bz2

3. Preprocess the data by run following codes.

python video2img.py --video_dir data/trainval --img_path data/image --emb_path data/img_emb --landmark_path shape_predictor_68_face_landmarks.dat # split image from video

python video2audio.py --video_dir data/trainval --audio_path data/audio --mono_path data/mono  # split audio from video

python audio2spec.py --mono_path data/mono --spec_path data/spec # calculate mel-spectrogram of each audio sample

4. Generate the file 'training.txt' for training.

python file.py --text_path data/trainval --mono_path data/mono --file_name LRS3_valid.txt.cleaned

Train

After prepare and preprocess the data, train the model on your data

python FVTTS.py --training_files 'LRS3_valid.txt.cleaned' --validation_files 'LRS3_test.txt.cleaned

Inference

For inference you need to prepare the face image of speakers.

See inference.ipynb for the examples of inference.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published