SVM (Use of SVM Kernels on formed and real data using object-oriented programming)
PROJECT 1:
-
Formed Data using uniform distribution (HW4.py)
-
Defined hyperplane by polynomial with degree 4 and used that as separating hyperplane (HW4.py)
-
Standardized Data (HW4.py)
-
Split data into test and train sets (HW4.py)
-
Linear SVM (HW4.py / SVM.py)
- Tune the parameter Cost (C) (HW4.py / SVM.py)
- Fit model with best parameters (HW4.py / SVM.py)
- Look at results of model via Confusion Matrix, Histogram Plots, and Scatter Plots (HW4.py / SVM.py)
- Radial Kernel (HW4.py / SVM.py)
- Tune the parameters Cost and Gamma (HW4.py / SVM.py)
- Fit model with best parameters (HW4.py / SVM.py)
- Look at results of model via Confusion Matrix, Histogram Plots, and Scatter Plots (HW4.py / SVM.py)
- Polynomial Kernel (HW4.py / SVM.py)
- Tune the parameters Cost, Coef0, and degree (HW4.py / SVM.py)
- Fit model with best parameters (HW4.py / SVM.py)
- Look at results of model via Confusion Matrix, Histogram Plots, and Scatter Plots (HW4.py / SVM.py)
- PDF Describing entire process and showing the formation of data, data description, tables, and graphs (Math6350.HW4.Vasquez.pdf)
PROJECT 2:
-
Exploration of Data (explore.py)
-
Feature Engineering (explore.py)
-
Reduction of Cases for project guidelines (explore.py)
-
Creating Classes for linear Regression Problem (total of 3 classes)
-
Standardize (HW4part2_proportion_2.py / test_train.py)
-
Test Train Split (HW4part2_proportion_2.py / test_train.py)
-
Radial Kernel (HW4part2_proportion_2.py / SVM.py)
- Tune the parameters Cost and Gamma (HW4part2_proportion_2.py / SVM.py)
- Fit model with best parameters (HW4part2_proportion_2.py / SVM.py)
- Look at results of model via Confusion Matrix, Histogram Plots, and Scatter Plots (HW4part2_proportion_2.py / SVM.py)
- Terminal Predictions using CDF from each SVM created for each class 1 vs all, 2 vs all, and 3 vs all (HW4part2_proportion_2.py / SVM.py)
- Terminal Confusion Matrix and analysis of model (HW4part2_proportion_2.py)
- Polynomial Kernel (HW4part2_proportion_poly2.py / SVM.py)
- Tune the parameters Cost and degree (HW4part2_proportion_poly2.py / SVM.py)
- Fit model with best parameters (HW4part2_proportion_poly2.py / SVM.py)
- Look at results of model via Confusion Matrix, Histogram Plots, and Scatter Plots (HW4part2_proportion_poly2.py / SVM.py)
- Terminal Predictions using CDF from each SVM created for each class 1 vs all, 2 vs all, and 3 vs all (HW4part2_proportion_poly2.py / SVM.py)
- Terminal Confusion Matrix and analysis of model (HW4part2_proportion_poly2.py)
- PDF Describing entire process and showing the formation of data, data description, tables, and graphs (Math6350.HW4part2.Vasquez.pdf)