Skip to content

dustinak80/SVM-Project

Repository files navigation

SVM-Project

SVM (Use of SVM Kernels on formed and real data using object-oriented programming)

PROJECT 1:

  1. Formed Data using uniform distribution (HW4.py)

  2. Defined hyperplane by polynomial with degree 4 and used that as separating hyperplane (HW4.py)

  3. Standardized Data (HW4.py)

  4. Split data into test and train sets (HW4.py)

  5. Linear SVM (HW4.py / SVM.py)

  • Tune the parameter Cost (C) (HW4.py / SVM.py)
  • Fit model with best parameters (HW4.py / SVM.py)
  • Look at results of model via Confusion Matrix, Histogram Plots, and Scatter Plots (HW4.py / SVM.py)
  1. Radial Kernel (HW4.py / SVM.py)
  • Tune the parameters Cost and Gamma (HW4.py / SVM.py)
  • Fit model with best parameters (HW4.py / SVM.py)
  • Look at results of model via Confusion Matrix, Histogram Plots, and Scatter Plots (HW4.py / SVM.py)
  1. Polynomial Kernel (HW4.py / SVM.py)
  • Tune the parameters Cost, Coef0, and degree (HW4.py / SVM.py)
  • Fit model with best parameters (HW4.py / SVM.py)
  • Look at results of model via Confusion Matrix, Histogram Plots, and Scatter Plots (HW4.py / SVM.py)
  1. PDF Describing entire process and showing the formation of data, data description, tables, and graphs (Math6350.HW4.Vasquez.pdf)

PROJECT 2:

  1. Exploration of Data (explore.py)

  2. Feature Engineering (explore.py)

  3. Reduction of Cases for project guidelines (explore.py)

  4. Creating Classes for linear Regression Problem (total of 3 classes)

  5. Standardize (HW4part2_proportion_2.py / test_train.py)

  6. Test Train Split (HW4part2_proportion_2.py / test_train.py)

  7. Radial Kernel (HW4part2_proportion_2.py / SVM.py)

  • Tune the parameters Cost and Gamma (HW4part2_proportion_2.py / SVM.py)
  • Fit model with best parameters (HW4part2_proportion_2.py / SVM.py)
  • Look at results of model via Confusion Matrix, Histogram Plots, and Scatter Plots (HW4part2_proportion_2.py / SVM.py)
  • Terminal Predictions using CDF from each SVM created for each class 1 vs all, 2 vs all, and 3 vs all (HW4part2_proportion_2.py / SVM.py)
  • Terminal Confusion Matrix and analysis of model (HW4part2_proportion_2.py)
  1. Polynomial Kernel (HW4part2_proportion_poly2.py / SVM.py)
  • Tune the parameters Cost and degree (HW4part2_proportion_poly2.py / SVM.py)
  • Fit model with best parameters (HW4part2_proportion_poly2.py / SVM.py)
  • Look at results of model via Confusion Matrix, Histogram Plots, and Scatter Plots (HW4part2_proportion_poly2.py / SVM.py)
  • Terminal Predictions using CDF from each SVM created for each class 1 vs all, 2 vs all, and 3 vs all (HW4part2_proportion_poly2.py / SVM.py)
  • Terminal Confusion Matrix and analysis of model (HW4part2_proportion_poly2.py)
  1. PDF Describing entire process and showing the formation of data, data description, tables, and graphs (Math6350.HW4part2.Vasquez.pdf)

About

SVM (Use of SVM Kernels on formed and real data using object-oriented programming)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages