本仓库旨在为初学者提供一个友好的图像语义分割入门环境。它包含了完整的处理流程,帮助您开始探索这一重要的计算机视觉领域。
图像语义分割是将数字图像划分为多个分段或区域的过程,每个分段或区域对应图像中的特定物体或区域。这项任务在自动驾驶、医疗影像分析和场景理解等广泛应用中都扮演着关键角色。
在这个仓库中,您将找到多种流行的语义分割模型的实现,包括广泛使用的 U-Net 架构。代码设计简洁易懂,方便修改,非常适合初学者和资深研究人员。
完整的工作流程: 涵盖从数据集准备到模型训练、评估和部署的整个语义分割workflow。 可定制的配置: 轻松调整超参数、数据集路径等设置,满足您的特定需求。 面向初学者: 代码结构和注释设计都非常友好,适合对该领域新手。 快速上手 要开始使用,请克隆本仓库并按照 README 中的说明进行操作。您将找到详细的设置说明,包括环境配置和数据集准备。
除了常用的torch之外,你可能额外需要安装
pip install -U segmentation-models-pytorch
git clone https://github.com/drowning-in-codes/Image-Segmentation-Playground.git
cd Image-Segmentation-Playground
贡献 欢迎对本项目进行贡献!如果您发现任何问题,有改进建议或想添加新功能,请随时提交 pull request 或创建 issue。
许可证 本项目采用 MIT 许可证
This repository serves as a beginner-friendly introduction to the field of image semantic segmentation. It provides a comprehensive workflow, including multiple state-of-the-art models, to help you get started with this fascinating and valuable computer vision task.
Image semantic segmentation is the process of partitioning a digital image into multiple segments or regions, each of which corresponds to a specific object or area within the image. This task is crucial in a wide range of applications, such as autonomous driving, medical image analysis, and scene understanding.
In this repository, you will find implementations of several popular semantic segmentation models, including the widely-used U-Net architecture. The code is designed to be easy to understand and modify, making it an excellent starting point for both beginners and experienced researchers.
- Comprehensive Workflow: The repository covers the entire semantic segmentation workflow, from dataset preparation to model training, evaluation, and deployment.
- Customizable Configurations: Easily adjust hyperparameters, dataset paths, and other settings to fit your specific needs.
- Beginner-Friendly: The code is structured and commented to be easily understandable for those new to the field of semantic segmentation.
Except for torch and other basic tools,you may also neet to:
pip install -U segmentation-models-pytorch
To get started, simply clone the repository and follow the instructions in the README. You'll find detailed setup instructions, including environment configuration and dataset preparation.
git clone https://github.com/drowning-in-codes/Image-Segmentation-Playground.git
cd Image-Segmentation-Playground