forked from Ajinkya-Sonawane/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
71 additions
and
121 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,137 +1,87 @@ | ||
import pandas as pd | ||
import math | ||
from statistics import mean | ||
|
||
class NB: | ||
def __init__(self): | ||
self.prob_1 = 0 | ||
self.prob_0 = 0 | ||
self.labels = ['very low','low','medium','high','very high'] | ||
self.data = [] | ||
#read the data | ||
data = pd.read_csv('diabetes.csv') | ||
|
||
def replace(self,avg,i,data): | ||
"""Function to replace missing values with the given mean value """ | ||
for j in range(len(data)): | ||
if data.iloc[j,i] == 0: | ||
data.iloc[j,i] = avg | ||
return data | ||
#labels for discretization | ||
labels = ['low','medium','high'] | ||
|
||
def discretize(self,data,labels): | ||
""" Function to discretize or categorize the input into the given labels""" | ||
temp = [] | ||
for i in list(data.columns)[:-1]: | ||
data[i] = pd.cut(data[i],bins=len(labels),labels=labels) | ||
return data | ||
#Preprocessing | ||
for j in data.columns[:-1]: | ||
mean = data[j].mean() | ||
data[j] = data[j].replace(0,mean) | ||
data[j] = pd.cut(data[j],bins=len(labels),labels=labels) | ||
|
||
def count(self,data,col,source,target): | ||
count = 0 | ||
d_col = list(data[col]) | ||
for i in range(0,len(data)): | ||
#Count the number of rows where with given category the target is present | ||
if d_col[i] == source and data.iloc[i,-1] == target: | ||
count += 1 | ||
return count | ||
#train test split | ||
split_per = [80,70,60] | ||
|
||
def probability(self,data,col,source,target): | ||
x = self.count(data,col,source,target) | ||
y = self.count(data,'Outcome',target,target) | ||
return x/y | ||
def count(data,colname,label,target): | ||
condition = (data[colname] == label) & (data['Outcome'] == target) | ||
return len(data[condition]) | ||
|
||
def train(self,data): | ||
temp = [] | ||
for i in list(data.columns)[:-1]: | ||
#Dictionary to store the probabilities of various categories with different class | ||
d = {i:{1:{},0:{}}} | ||
for j in self.labels: | ||
x = self.probability(data,i,j,1) | ||
y = self.probability(data,i,j,0) | ||
d[i][1][j] = x | ||
d[i][0][j] = y | ||
temp.append(d) | ||
return temp | ||
#Process starts here | ||
for i in split_per: | ||
|
||
def test(self,data,temp): | ||
results = [] | ||
for i in range(0,len(data)): | ||
op_1 = 1 #Probability of class 1 for given features | ||
op_0 = 1 #Probability of class 0 for given features | ||
c = 0 #To iterate through different features | ||
for j in data.columns: | ||
#Using Baye's formula | ||
op_1 *= temp[c][j][1][data.iloc[i,c]] | ||
op_0 *= temp[c][j][0][data.iloc[i,c]] | ||
c += 1 | ||
#Whichever probability is greate output result as that class | ||
if op_1 > op_0: | ||
results.append(1) | ||
else: | ||
results.append(0) | ||
|
||
return results | ||
#result list to store predicted values | ||
predicted = [] | ||
|
||
def process(self,train_per): | ||
#dictionary to store probabilities | ||
probabilities = {0:{},1:{}} | ||
|
||
#Read the input file | ||
self.data = pd.read_csv("diabetes.csv") | ||
|
||
# Traverse respective columns and replace missing values with the mean | ||
for i in range(1,len(list(self.data.columns))-1): | ||
avg = mean(self.data.iloc[:,i]) | ||
self.data = self.replace(math.floor(avg),i,self.data) | ||
|
||
#Discretize the data | ||
self.data = self.discretize(self.data,self.labels) | ||
#calculate training length | ||
train_len = int((i*len(data))/100) | ||
|
||
#Calculate probability of output being 1 or 0 | ||
self.prob_1 = self.probability(self.data,'Outcome',1,1) | ||
self.prob_0 = self.probability(self.data,'Outcome',0,0) | ||
#Split training and testing data | ||
train_X = data.iloc[:train_len,:] | ||
|
||
# Split dataset into training and test data | ||
train_len = len(self.data)*train_per/100 | ||
train_len = math.floor(train_len) | ||
train_data = self.data.iloc[:train_len,:] | ||
test_data = self.data.iloc[train_len+1:,:] | ||
test_X = data.iloc[train_len+1:,:-1] | ||
test_y = data.iloc[train_len+1:,-1] | ||
|
||
#Train the model | ||
temp = self.train(train_data) | ||
#count total number of 0s and 1s | ||
count_0 = count(train_X,'Outcome',0,0) | ||
count_1 = count(train_X,'Outcome',1,1) | ||
|
||
prob_0 = count_0/len(train_X) | ||
prob_1 = count_1/len(train_X) | ||
|
||
#Test the model | ||
results = self.test(test_data.iloc[:,:-1],temp) | ||
#Train the model | ||
for j in train_X.columns[:-1]: | ||
|
||
#Calculate confusion matrix | ||
""" | ||
TP : Actual Yes Predicted Yes | ||
TN : Actual No Predicted No | ||
FP : Actual No Predicted Yes | ||
FN : Actual Yes Predicted No | ||
""" | ||
tp,tn = 0,0 | ||
fp,fn = 0,0 | ||
for i in range(0,len(results)): | ||
if test_data.iloc[i,-1] == 1: | ||
if results[i] == test_data.iloc[i,-1]: | ||
tp+=1 | ||
else: | ||
fn+=1 | ||
probabilities[0][j] = {} | ||
probabilities[1][j] = {} | ||
|
||
for k in labels: | ||
count_k_0 = count(train_X,j,k,0) | ||
count_k_1 = count(train_X,j,k,1) | ||
|
||
probabilities[0][j][k] = count_k_0 / count_0 | ||
probabilities[1][j][k] = count_k_1 / count_1 | ||
|
||
#Test the model | ||
for row in range(0,len(test_X)): | ||
prod_0 = prob_0 | ||
prod_1 = prob_1 | ||
for feature in test_X.columns: | ||
prod_0 *= probabilities[0][feature][test_X[feature].iloc[row]] | ||
prod_1 *= probabilities[1][feature][test_X[feature].iloc[row]] | ||
|
||
#Predict the outcome | ||
if prod_0 > prod_1: | ||
predicted.append(0) | ||
else: | ||
predicted.append(1) | ||
|
||
#create confusion matrix | ||
tp,tn,fp,fn = 0,0,0,0 | ||
for j in range(0,len(predicted)): | ||
if predicted[j] == 0: | ||
if test_y.iloc[j] == 0: | ||
tp += 1 | ||
else: | ||
if results[i] == test_data.iloc[i,-1]: | ||
tn+=1 | ||
else: | ||
fp+=1 | ||
|
||
accuracy = (tp+tn)/(tp+tn+fp+fn) | ||
misclassification = (fp+fn)/(tp+tn+fp+fn) | ||
print('\n----------------------------------------------') | ||
print('\nConfusion Matrix with Training : '+str(train_per)+' Test : '+str(100-train_per)) | ||
print('\n\t\tActual Yes\tActual No') | ||
print('Predicted Yes\tTP='+str(tp)+'\t\tFP='+str(fp)) | ||
print('Predicted No \tFN='+str(fn)+'\t\tTN='+str(tn)) | ||
print('\nAccuracy : ',(accuracy*100)) | ||
print('Misclassification rate : ',(misclassification*100)) | ||
|
||
n = NB() | ||
n.process(70) | ||
n.process(30) | ||
n.process(80) | ||
n.process(20) | ||
fp += 1 | ||
else: | ||
if test_y.iloc[j] == 1: | ||
tn += 1 | ||
else: | ||
fn += 1 | ||
print('Accuracy for training length '+str(i)+'% : ',((tp+tn)/len(test_y))*100) |