Skip to content

dougefla/Awesome-Articulated-Object-Understanding

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

38 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Awesome Articulated Objects Understanding

A curated list of resources for articulated objects understanding, including articulation estimation and articulated object reconstruction, excluding human/animal reconstruction. This list is intended to track to the development of articulated objects understanding. If you have any suggestions (missing papers, new tasks, etc.), feel free to pull a request or open an issue.

Update log

2024/10/30

  • Add 3 papers: SINGAPO, ParaHome, ACDC

2024/10/03

  • Add 6 papers: DREAM, Wang et al., KinScene, Robot See Robot Do, S2O, UniAff

2024/09/25

  • Add 1 paper: AOT

2024/09/18

  • Add 4 papers: LEIA, DexSim2Real$^2$, ManiDext, NARF24

2024/09/05

  • Add 3 papers: RoboStudio, Puppet-Master, PhysPart

2024/08/30

  • Add 1 paper: OP-Align

2024/07/31

  • Add 3 papers: MARS, RoCap, Articulate your NeRF
  • Fix: Arxiv -> arXiv
  • Update arXiv papers publication states.

2024/06/19

  • Add 5 papers: Sync4D, URDFormer, A3VLM, Real2Code, CenterArt
  • Add category: Digital Twins.

2024/04/19

  • Add 1 paper: REACTO

2024/04/05

  • Add 3 papers: Knowledge NeRF, Uzolas eta al, DigitalTwinArt

2024/03/28

  • Add 1 paper: Survey on Modeling of Articulated Objects

2024/03/26

  • Add 1 paper: 3D Implicit Transporter

2024/03/16

  • Add 3 papers: NARF22, CAPT, SM$^3$

2024/01/08

  • Add 1 paper: CAGE

2023/12/30

  • Add 3 papers: NAP, GAPartNet, OPDMulti

2023/12/25

  • Merry Xmas! Add 17 papers. Remove 3 papers. Re-organize the markdown.

2023/12/17

  • Add 2 previous papers:
    • StrobeNet: Category-Level Multiview Reconstruction of Articulated Objects [Arxiv 2021, StrobeNet]
    • Unsupervised Kinematic Motion Detection for Part-segmented 3D Shape Collections [SIGGRAPH 2022, UKMD]

2023/11/28

  • Initiate with 39 papers.

Table of contents

Survey

1. Survey on Modeling of Articulated Objects

Liu et al., arXiv 2024

πŸ“„ Paper

Abstract

3D modeling of articulated objects is a research problem within computer vision, graphics, and robotics. Its objective is to understand the shape and motion of the articulated components, represent the geometry and mobility of object parts, and create realistic models that reflect articulated objects in the real world. This survey provides a comprehensive overview of the current state-of-the-art in 3D modeling of articulated objects, with a specific focus on the task of articulated part perception and articulated object creation (reconstruction and generation). We systematically review and discuss the relevant literature from two perspectives: geometry processing and articulation modeling. Through this survey, we highlight the substantial progress made in these areas, outline the ongoing challenges, and identify gaps for future research. Our survey aims to serve as a foundational reference for researchers and practitioners in computer vision and graphics, offering insights into the complexities of articulated object modeling.

Articulation Detection

1. RoSI: Recovering 3D Shape Interiors from Few Articulation Images

RoSI, arXiv 2023

πŸ“„ Paper

  • Level: Category-Agnostic
  • Dataset: PartNet-Mobility
  • Input: Multiple RGB Images, Mesh
Abstract

The dominant majority of 3D models that appear in gaming, VR/AR, and those we use to train geometric deep learning algorithms are incomplete, since they are modeled as surface meshes and missing their interior structures. We present a learning framework to recover the shape interiors (RoSI) of existing 3D models with only their exteriors from multi-view and multi-articulation images. Given a set of RGB images that capture a target 3D object in different articulated poses, possibly from only few views, our method infers the interior planes that are observable in the input images. Our neural architecture is trained in a category-agnostic manner and it consists of a motion-aware multi-view analysis phase including pose, depth, and motion estimations, followed by interior plane detection in images and 3D space, and finally multi-view plane fusion. In addition, our method also predicts part articulations and is able to realize and even extrapolate the captured motions on the target 3D object. We evaluate our method by quantitative and qualitative comparisons to baselines and alternative solutions, as well as testing on untrained object categories and real image inputs to assess its generalization capabilities.

2. Understanding 3D Object Interaction from a Single Image

3DOI, ICCV 2023

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: Articulation, EpicKitchen, Taskonomy
  • Input: Single RGB Image
Abstract

Humans can easily understand a single image as depicting multiple potential objects permitting interaction. We use this skill to plan our interactions with the world and accelerate understanding new objects without engaging in interaction. In this paper, we would like to endow machines with the similar ability, so that intelligent agents can better explore the 3D scene or manipulate objects. Our approach is a transformer-based model that predicts the 3D location, physical properties and affordance of objects. To power this model, we collect a dataset with Internet videos, egocentric videos and indoor images to train and validate our approach. Our model yields strong performance on our data, and generalizes well to robotics data.

3. OPDMulti: Openable Part Detection for Multiple Objects

OPDMulti, 3DV 2024

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Agnostic
  • Input: Single RGB Image
Abstract

Openable part detection is the task of detecting the openable parts of an object in a single-view image, and predicting corresponding motion parameters. Prior work investigated the unrealistic setting where all input images only contain a single openable object. We generalize this task to scenes with multiple objects each potentially possessing openable parts, and create a corresponding dataset based on real-world scenes. We then address this more challenging scenario with OPDFormer: a part-aware transformer architecture. Our experiments show that the OPDFormer architecture significantly outperforms prior work. The more realistic multiple-object scenarios we investigated remain challenging for all methods, indicating opportunities for future work.

4. OPD: Single-view 3D Openable Part Detection

OPD, ECCV 2022

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: OPDSynth, OPDReal
  • Input: Single RGB Image
Abstract

We address the task of predicting what parts of an object can open and how they move when they do so. The input is a single image of an object, and as output we detect what parts of the object can open, and the motion parameters describ- ing the articulation of each openable part. To tackle this task, we create two datasets of 3D objects: OPDSynth based on existing synthetic objects, and OPDReal based on RGBD reconstructions of real objects. We then design OPDRCNN, a neural architecture that detects openable parts and predicts their motion parameters. Our experiments show that this is a challenging task especially when considering general- ization across object categories, and the limited amount of information in a single image. Our architecture outperforms baselines and prior work especially for RGB image inputs.

5. Understanding 3D Object Articulation in Internet Videos

3DADN, CVPR 2022

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: Charades
  • Input: RGB Sequence
Abstract

We propose to investigate detecting and characterizing the 3D planar articulation of objects from ordinary videos. While seemingly easy for humans, this problem poses many challenges for computers. We propose to approach this problem by combining a top-down detection system that finds planes that can be articulated along with an optimization approach that solves for a 3D plane that can explain a sequence of observed articulations. We show that this system can be trained on a combination of videos and 3D scan datasets. When tested on a dataset of challenging Internet videos and the Charades dataset, our approach obtains strong performance.

6. A Hand Motion-guided Articulation and Segmentation Estimation

Hartanto et al., ROMAN 2020

πŸ“„ Paper

  • Level: Category-Agnostic
  • Input: RGB-D Sequence
Abstract

In this paper, we present a method for simultaneous articulation model estimation and segmentation of an articulated object in RGB-D images using human hand motion. Our method uses the hand motion in the processes of the initial articulation model estimation, ICP-based model parameter optimization, and region selection of the target object. The hand motion gives an initial guess of the articulation model: prismatic or revolute joint. The method estimates the joint parameters by aligning the RGB-D images with the constraint of the hand motion. Finally, the target regions are selected from the cluster regions which move symmetrically along with the articulation model. Our experimental results show the robustness of the proposed method for the various objects.

7. Camera-to-Robot Pose Estimation from a Single Image

DREAM, ICRA 2020

πŸ“„ Paper | 🌐 Project Page

  • Level: Category-Level
  • Input: Single RGB Image
Abstract

We present an approach for estimating the pose of an external camera with respect to a robot using a single RGB image of the robot. The image is processed by a deep neural network to detect 2D projections of keypoints (such as joints) associated with the robot. The network is trained entirely on simulated data using domain randomization to bridge the reality gap. Perspective-n-point (PnP) is then used to recover the camera extrinsics, assuming that the camera intrinsics and joint configuration of the robot manipulator are known. Unlike classic hand-eye calibration systems, our method does not require an off-line calibration step. Rather, it is capable of computing the camera extrinsics from a single frame, thus opening the possibility of on-line calibration. We show experimental results for three different robots and camera sensors, demonstrating that our approach is able to achieve accuracy with a single frame that is comparable to that of classic off-line hand-eye calibration using multiple frames. With additional frames from a static pose, accuracy improves even further. Code, datasets, and pretrained models for three widely-used robot manipulators are made available.

8. Deep Part Induction from Articulated Object Pairs

Yi et al., SIGGRAPH Asia 2018

πŸ“„ Paper | πŸ’» Code

  • Level: Category-Level
  • Input: Point Cloud + CAD model
Abstract

Object functionality is often expressed through part articulation -- as when the two rigid parts of a scissor pivot against each other to perform the cutting function. Such articulations are often similar across objects within the same functional category. In this paper, we explore how the observation of different articulation states provides evidence for part structure and motion of 3D objects. Our method takes as input a pair of unsegmented shapes representing two different articulation states of two functionally related objects, and induces their common parts along with their underlying rigid motion. This is a challenging setting, as we assume no prior shape structure, no prior shape category information, no consistent shape orientation, the articulation states may belong to objects of different geometry, plus we allow inputs to be noisy and partial scans, or point clouds lifted from RGB images. Our method learns a neural network architecture with three modules that respectively propose correspondences, estimate 3D deformation flows, and perform segmentation. To achieve optimal performance, our architecture alternates between correspondence, deformation flow, and segmentation prediction iteratively in an ICP-like fashion. Our results demonstrate that our method significantly outperforms state-of-the-art techniques in the task of discovering articulated parts of objects. In addition, our part induction is object-class agnostic and successfully generalizes to new and unseen objects.

Articulation Estimation

1. CAPT: Category-level Articulation Estimation from a Single Point Cloud Using Transformer

CAPT, ICRA 2024

πŸ“„ Paper

  • Level: Category-Level
  • Dataset: Shape2Motion
  • Input: Single Point Cloud
Abstract

The ability to estimate joint parameters is essential for various applications in robotics and computer vision. In this paper, we propose CAPT: category-level articulation estimation from a point cloud using Transformer. CAPT uses an end-to-end transformer-based architecture for joint parameter and state estimation of articulated objects from a single point cloud. The proposed CAPT methods accurately estimate joint parameters and states for various articulated objects with high precision and robustness. The paper also introduces a motion loss approach, which improves articulation estimation performance by emphasizing the dynamic features of articulated objects. Additionally, the paper presents a double voting strategy to provide the framework with coarse-to-fine parameter estimation. Experimental results on several category datasets demonstrate that our methods outperform existing alternatives for articulation estimation. Our research provides a promising solution for applying Transformer-based architectures in articulated object analysis.

2. MARS: Multimodal Active Robotic Sensing for Articulated Characterization

MARS, IJCAI 2024

πŸ“„ Paper | πŸ’» Code

  • Level: Category-Level
  • Dataset: PartNet-Mobility
  • Input: RGB Point Cloud
Abstract

Precise perception of articulated objects is vital for empowering service robots. Recent studies mainly focus on point cloud, a single-modal approach, often neglecting vital texture and lighting details and assuming ideal conditions like optimal viewpoints, unrepresentative of real-world scenarios. To address these limitations, we introduce MARS, a novel framework for articulated object characterization. It features a multi-modal fusion module utilizing multi-scale RGB features to enhance point cloud features, coupled with reinforcement learning-based active sensing for autonomous optimization of observation viewpoints. In experiments conducted with various articulated object instances from the PartNet-Mobility dataset, our method outperformed current state-of-the-art methods in joint parameter estimation accuracy. Additionally, through active sensing, MARS further reduces errors, demonstrating enhanced efficiency in handling suboptimal viewpoints. Furthermore, our method effectively generalizes to real-world articulated objects, enhancing robot interactions.

3. OP-Align: Object-level and Part-level Alignment for Self-supervised Category-level Articulated Object Pose Estimation

OP-Align, ECCV 2024

πŸ“„ Paper | πŸ’» Code

  • Level: Category-Level
  • Dataset: Novel dataset, available in github
  • Input: Single RGB-D
Abstract

Category-level articulated object pose estimation focuses on the pose estimation of unknown articulated objects within known categories. Despite its significance, this task remains challenging due to the varying shapes and poses of objects, expensive dataset annotation costs, and complex real-world environments. In this paper, we propose a novel self-supervised approach that leverages a single-frame point cloud to solve this task. Our model consistently generates reconstruction with a canonical pose and joint state for the entire input object, and it estimates object-level poses that reduce overall pose variance and part-level poses that align each part of the input with its corresponding part of the reconstruction. Experimental results demonstrate that our approach significantly outperforms previous self-supervised methods and is comparable to the state-of-the-art supervised methods. To assess the performance of our model in real-world scenarios, we also introduce a new real-world articulated object benchmark dataset.

4. Building Rearticulable Models for Arbitrary 3D Objects from 4D Point Clouds

Liu et al., CVPR 2023

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: PartNet-Mobility
  • Input: Point Cloud Sequence
Abstract

We build rearticulable models for arbitrary everyday man-made objects containing an arbitrary number of parts that are connected together in arbitrary ways via 1 degree-of-freedom joints. Given point cloud videos of such everyday objects, our method identifies the distinct object parts, what parts are connected to what other parts, and the properties of the joints connecting each part pair. We do this by jointly optimizing the part segmentation, transformation, and kinematics using a novel energy minimization framework. Our inferred animatable models, enables retargeting to novel poses with sparse point correspondences guidance. We test our method on a new articulating robot dataset, and the Sapiens dataset with common daily objects, as well as real-world scans. Experiments show that our method outperforms two leading prior works on various metrics.

5. Category-Level Articulated Object 9D Pose Estimation via Reinforcement Learning

ArtPERL, MM 2023

πŸ“„ Paper

  • Level: Category-Level
  • Dataset: ArtImage, ReArtMix, RobotArm
  • Input: Point Cloud
Abstract

Human life is populated with articulated objects. Current category-level articulated object 9D pose estimation (Articulated Object 9D Pose Estimation, ArtOPE) methods usually meet the challenges of shared object representation requirement, kinematics-agnostic pose modeling and self-occlusions. In this paper, we propose a novel framework called Articulated object 9D Pose Estimation via Reinforcement Learning (ArtPERL), which formulates the category-level ArtOPE as a reinforcement learning problem. Given a point cloud or RGB-D image input, ArtPERL firstly retrieves the part-sensitive articulated object as reference point cloud, and then introduces a joint-centric pose modeling strategy that estimates 9D pose by fitting joint states via reinforced agent training. Finally, we further propose a pose optimization that refine the predicted 9D pose considering kinematic constraints. We evaluate our ArtPERL on various datasets ranging from synthetic point cloud to real-world multi-hinged object. Experiments demonstrate the superior performance and robustness of our ArtPERL. Our work provides a new perspective on category-level articulated object 9D pose estimation and has the potential to be applied in many fields, including robotics, augmented reality, and autonomous driving.

6. Towards Real-World Category-level Articulation Pose Estimation

CAPER, TIP 2022

πŸ“„ Paper

  • Level: Category-Level
  • Dataset: ReArt-48 (AKB-48)
  • Input: RGB-D
Abstract

Human life is populated with articulated objects. Current Category-level Articulation Pose Estimation (CAPE) methods are studied under the single-instance setting with a fixed kinematic structure for each category. Considering these limitations, we reform this problem setting for real-world environments and suggest a CAPE-Real (CAPER) task setting. This setting allows varied kinematic structures within a semantic category, and multiple instances to co-exist in an observation of real world. To support this task, we build an articulated model repository ReArt-48 and present an efficient dataset generation pipeline, which contains Fast Articulated Object Modeling (FAOM) and Semi-Authentic MixEd Reality Technique (SAMERT). Accompanying the pipeline, we build a large-scale mixed reality dataset ReArtMix and a real world dataset ReArtVal. We also propose an effective framework ReArtNOCS that exploits RGB-D input to estimate part-level pose for multiple instances in a single forward pass. Extensive experiments demonstrate that the proposed ReArtNOCS can achieve good performance on both CAPER and CAPE settings. We believe it could serve as a strong baseline for future research on the CAPER task.

7. Unsupervised Kinematic Motion Detection for Part-segmented 3D Shape Collections

UKMD, SIGGRAPH 2022

πŸ“„ Paper | πŸ’» Code

  • Level: Category-Level
  • Dataset: PartNet-Mobility
  • Input: Single shape, Segmentation
Abstract

3D models of manufactured objects are important for populating virtual worlds and for synthetic data generation for vision and robotics. To be most useful, such objects should be articulated: their parts should move when interacted with. While articulated object datasets exist, creating them is labor-intensive. Learning-based prediction of part motions can help, but all existing methods require annotated training data. In this paper, we present an unsupervised approach for discovering articulated motions in a part-segmented 3D shape collection. Our approach is based on a concept we call category closure: any valid articulation of an object's parts should keep the object in the same semantic category (e.g. a chair stays a chair). We operationalize this concept with an algorithm that optimizes a shape's part motion parameters such that it can transform into other shapes in the collection. We evaluate our approach by using it to re-discover part motions from the PartNet-Mobility dataset. For almost all shape categories, our method's predicted motion parameters have low error with respect to ground truth annotations, outperforming two supervised motion prediction methods.

8. Distributional Depth-Based Estimation of Object Articulation Models

DUST-Net, CoRL 2021

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: PartNet-Mobility, SyntheticArticulatedData
  • Input: Depth Sequence
Abstract

We propose a method that efficiently learns distributions over articulation model parameters directly from depth images without the need to know articulation model categories a priori. By contrast, existing methods that learn articulation models from raw observations typically only predict point estimates of the model parameters, which are insufficient to guarantee the safe manipulation of articulated objects. Our core contributions include a novel representation for distributions over rigid body transformations and articulation model parameters based on screw theory, von Mises-Fisher distributions, and Stiefel manifolds. Combining these concepts allows for an efficient, mathematically sound representation that implicitly satisfies the constraints that rigid body transformations and articulations must adhere to. Leveraging this representation, we introduce a novel deep learning based approach, DUST-net, that performs category-independent articulation model estimation while also providing model uncertainties. We evaluate our approach on several benchmarking datasets and real-world objects and compare its performance with two current state-of-the-art methods. Our results demonstrate that DUST-net can successfully learn distributions over articulation models for novel objects across articulation model categories, which generate point estimates with better accuracy than state-of-the-art methods and effectively capture the uncertainty over predicted model parameters due to noisy inputs.

9. ScrewNet: Category-Independent Articulation Model Estimation From Depth Images Using Screw Theory

ScrewNet, ICRA 2021

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: PartNet-Mobility
  • Input: Depth Sequence
Abstract

Robots in human environments will need to interact with a wide variety of articulated objects such as cabinets, drawers, and dishwashers while assisting humans in performing day-to-day tasks. Existing methods either require objects to be textured or need to know the articulation model category a priori for estimating the model parameters for an articulated object. We propose ScrewNet, a novel approach that estimates an object’s articulation model directly from depth images without requiring a priori knowledge of the articulation model category. ScrewNet uses screw theory to unify the representation of different articulation types and perform category-independent articulation model estimation. We evaluate our approach on two benchmarking datasets and compare its performance with a current state-of-the-art method. Results demonstrate that ScrewNet can successfully estimate the articulation models and their parameters for novel objects across articulation model categories with better on average accuracy than the prior state-of-the-art method.

10. Nothing But Geometric Constraints: A Model-Free Method for Articulated Object Pose Estimation

GC-Pose, arXiv 2020

πŸ“„ Paper

  • Level: Category-Agnostic
  • Dataset: PartNet-Mobility, UR5, synthetic
  • Input: RGB Sequence
Abstract

We propose an unsupervised vision-based system to estimate the joint configurations of the robot arm from a sequence of RGB or RGB-D images without knowing the model a priori, and then adapt it to the task of category-independent articulated object pose estimation. We combine a classical geometric formulation with deep learning and extend the use of epipolar constraint to multi-rigid-body systems to solve this task. Given a video sequence, the optical flow is estimated to get the pixel-wise dense correspondences. After that, the 6D pose is computed by a modified PnP algorithm. The key idea is to leverage the geometric constraints and the constraint between multiple frames. Furthermore, we build a synthetic dataset with different kinds of robots and multi-joint articulated objects for the research of vision-based robot control and robotic vision. We demonstrate the effectiveness of our method on three benchmark datasets and show that our method achieves higher accuracy than the state-of-the-art supervised methods in estimating joint angles of robot arms and articulated objects.

11. Category-Level Articulated Object Pose Estimation

ANCSH, CVPR 2020

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Level
  • Dataset: Shape2Motion, PartNet-Mobility,
  • Input: Single Point Cloud
Abstract

This project addresses the task of category-level pose estimation for articulated objects from a single depth image. We present a novel category-level approach that correctly accommodates object instances previously unseen during training. We introduce Articulation-aware Normalized Coordinate Space Hierarchy (ANCSH) - a canonical representation for different articulated objects in a given category. As the key to achieve intra-category generalization, the representation constructs a canonical object space as well as a set of canonical part spaces. The canonical object space normalizes the object orientation,scales and articulations (e.g. joint parameters and states) while each canonical part space further normalizes its part pose and scale. We develop a deep network based on PointNet++ that predicts ANCSH from a single depth point cloud, including part segmentation, normalized coordinates, and joint parameters in the canonical object space. By leveraging the canonicalized joints, we demonstrate: 1) improved performance in part pose and scale estimations using the induced kinematic constraints from joints; 2) high accuracy for joint parameter estimation in camera space.

12. RPM-Net: Recurrent Prediction of Motion and Parts from Point Cloud

RPM-Net, ToG 2019

πŸ“„ Paper | πŸ’» Code

  • Level: Category-Agnostic
  • Input: Single Point Cloud
Abstract

We introduce RPM-Net, a deep learning-based approach which simultaneously infers movable parts and hallucinates their motions from a single, un-segmented, and possibly partial, 3D point cloud shape. RPM-Net is a novel Recurrent Neural Network (RNN), composed of an encoder-decoder pair with interleaved Long Short-Term Memory (LSTM) components, which together predict a temporal sequence of pointwise displacements for the input point cloud. At the same time, the displacements allow the network to learn movable parts, resulting in a motion-based shape segmentation. Recursive applications of RPM-Net on the obtained parts can predict finer-level part motions, resulting in a hierarchical object segmentation. Furthermore, we develop a separate network to estimate part mobilities, e.g., per-part motion parameters, from the segmented motion sequence. Both networks learn deep predictive models from a training set that exemplifies a variety of mobilities for diverse objects. We show results of simultaneous motion and part predictions from synthetic and real scans of 3D objects exhibiting a variety of part mobilities, possibly involving multiple movable parts.

13. Learning to Generalize Kinematic Models to Novel Objects

Abbatematteo et al., CoRL 2019

πŸ“„ Paper | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: SyntheticArticulatedData
  • Input: Single Point Cloud
Abstract

Robots operating in human environments must be capable of interacting with a wide variety of articulated objects such as cabinets, refrigerators, and drawers. Existing approaches require human demonstration or minutes of interaction to fit kinematic models to each novel object from scratch. We present a framework for estimating the kinematic model and configuration of previously unseen articulated objects, conditioned upon object type, from as little as a single observation. We train our system in simulation with a novel dataset of synthetic articulated objects; at runtime, our model can predict the shape and kinematic model of an object from depth sensor data. We demonstrate that our approach enables a MOVO robot to view an object with its RGB-D sensor, estimate its motion model, and use that estimate to interact with the object.

Dataset

1. RoCap: A Robotic Data Collection Pipeline for the Pose Estimation of Appearance-Changing Objects

RoCap, arXiv 2024

πŸ“„ Paper

Abstract

Object pose estimation plays a vital role in mixed-reality interactions when users manipulate tangible objects as controllers. Traditional vision-based object pose estimation methods leverage 3D reconstruction to synthesize training data. However, these methods are designed for static objects with diffuse colors and do not work well for objects that change their appearance during manipulation, such as deformable objects like plush toys, transparent objects like chemical flasks, reflective objects like metal pitchers, and articulated objects like scissors. To address this limitation, we propose Rocap, a robotic pipeline that emulates human manipulation of target objects while generating data labeled with ground truth pose information. The user first gives the target object to a robotic arm, and the system captures many pictures of the object in various 6D configurations. The system trains a model by using captured images and their ground truth pose information automatically calculated from the joint angles of the robotic arm. We showcase pose estimation for appearance-changing objects by training simple deep-learning models using the collected data and comparing the results with a model trained with synthetic data based on 3D reconstruction via quantitative and qualitative evaluation. The findings underscore the promising capabilities of Rocap.

2. ParaHome: Parameterizing Everyday Home Activities Towards 3D Generative Modeling of Human-Object Interactions

ParaHome, arXiv 2024

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Dataset: ParaHome
Abstract

To enable machines to learn how humans interact with the physical world in our daily activities, it is crucial to provide rich data that encompasses the 3D motion of humans as well as the motion of objects in a learnable 3D representation. Ideally, this data should be collected in a natural setup, capturing the authentic dynamic 3D signals during human-object interactions. To address this challenge, we introduce the ParaHome system, designed to capture and parameterize dynamic 3D movements of humans and objects within a common home environment. Our system consists of a multi-view setup with 70 synchronized RGB cameras, as well as wearable motion capture devices equipped with an IMU-based body suit and hand motion capture gloves. By leveraging the ParaHome system, we collect a novel large-scale dataset of human-object interaction. Notably, our dataset offers key advancement over existing datasets in three main aspects: (1) capturing 3D body and dexterous hand manipulation motion alongside 3D object movement within a contextual home environment during natural activities; (2) encompassing human interaction with multiple objects in various episodic scenarios with corresponding descriptions in texts; (3) including articulated objects with multiple parts expressed with parameterized articulations. Building upon our dataset, we introduce new research tasks aimed at building a generative model for learning and synthesizing human-object interactions in a real-world room setting.

3. AO-Grasp: Articulated Object Grasp Generation

AO-Grasp, arXiv 2023

πŸ“„ Paper | 🌐 Project Page

  • Level: Category-Agnostic
  • Dataset: PartNet-Mobility
  • Input: Single Point Cloud
Abstract

We introduce AO-Grasp, a grasp proposal method that generates stable and actionable 6 degree-of-freedom grasps for articulated objects. Our generated grasps enable robots to interact with articulated objects, such as opening and closing cabinets and appliances. Given a segmented partial point cloud of a single articulated object, AO-Grasp predicts the best grasp points on the object with a novel Actionable Grasp Point Predictor model and then finds corresponding grasp orientations for each point by leveraging a state-of-the-art rigid object grasping method. We train AO-Grasp on our new AO-Grasp Dataset, which contains 48K actionable parallel-jaw grasps on synthetic articulated objects. In simulation, AO-Grasp achieves higher grasp success rates than existing rigid object grasping and articulated object interaction baselines on both train and test categories. Additionally, we evaluate AO-Grasp on 120 real-world scenes of objects with varied geometries, articulation axes, and joint states, where AO-Grasp produces successful grasps on 67.5% of scenes, while the baseline only produces successful grasps on 33.3% of the scenes.

4. MultiScan: Scalable RGBD scanning for 3D environments with articulated objects

MultiScan, NIPS 2022

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Level
  • Dataset: MultiScan
Abstract

We introduce MultiScan, a scalable RGBD dataset construction pipeline leveraging commodity mobile devices to scan indoor scenes with articulated objects and web-based semantic annotation interfaces to efficiently annotate object and part semantics and part mobility parameters. We use this pipeline to collect 273 scans of 117 indoor scenes containing 10957 objects and 5129 parts. The resulting MultiScan dataset provides RGBD streams with per-frame camera poses, textured 3D surface meshes, richly annotated part-level and object-level semantic labels, and part mobility parameters. We validate our dataset on instance segmentation and part mobility estimation tasks and benchmark methods for these tasks from prior work. Our experiments show that part segmentation and mobility estimation in real 3D scenes remain challenging despite recent progress in 3D object segmentation.

5. AKB-48: A real-world articulated object knowledge base

AKB-48, CVPR 2022

πŸ“„ Paper | 🌐 Project Page

  • Level: Category-Level
  • Dataset: AKB-48
  • Input: Single RGB-D Image
Abstract

Human life is populated with articulated objects. A comprehensive understanding of articulated objects, namely appearance, structure, physics property, and semantics, will benefit many research communities. As current articulated object understanding solutions are usually based on synthetic object dataset with CAD models without physics properties, which prevent satisfied generalization from simulation to real-world applications in visual and robotics tasks. To bridge the gap, we present AKB-48: a large-scale Articulated object Knowledge Base which consists of 2,037 real-world 3D articulated object models of 48 categories. Each object is described by a knowledge graph ArtiKG. To build the AKB-48, we present a fast articulation knowledge modeling (FArM) pipeline, which can fulfill the ArtiKG for an articulated object within 10-15 minutes, and largely reduce the cost for object modeling in the real world. Using our dataset, we propose AKBNet, a novel integral pipeline for Category-level Visual Articulation Manipulation (C-VAM) task, in which we benchmark three sub-tasks, namely pose estimation, object reconstruction and manipulation.

6. SAPIEN: A simulated part-based interactive environment

SPAIEN, CVPR 2020

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Dataset: PartNet-Mobility
Abstract

Building home assistant robots has long been a pursuit for vision and robotics researchers. To achieve this task, a simulated environment with physically realistic simulation, sufficient articulated objects, and transferability to the real robot is indispensable. Existing environments achieve these requirements for robotics simulation with different levels of simplification and focus. We take one step further in constructing an environment that supports household tasks for training robot learning algorithm. Our work, SAPIEN, is a realistic and physics-rich simulated environment that hosts a large-scale set for articulated objects. Our SAPIEN enables various robotic vision and interaction tasks that require detailed part-level understanding.We evaluate state-of-the-art vision algorithms for part detection and motion attribute recognition as well as demonstrate robotic interaction tasks using heuristic approaches and reinforcement learning algorithms. We hope that our SAPIEN can open a lot of research directions yet to be explored, including learning cognition through interaction, part motion discovery, and construction of robotics-ready simulated game environment.

7. Shape2Motion: Joint Analysis of Motion Parts and Attributes from 3D Shapes

Shape2Motion, CVPR 2019

πŸ“„ Paper | πŸ’» Code

  • Level: Category-Level
  • Dataset: Shape2Motion
  • Input: Single Point Cloud
Abstract

For the task of mobility analysis of 3D shapes, we propose joint analysis for simultaneous motion part segmentation and motion attribute estimation, taking a single 3D model as input. The problem is significantly different from those tackled in the existing works which assume the availability of either a pre-existing shape segmentation or multiple 3D models in different motion states. To that end, we develop Shape2Motion which takes a single 3D point cloud as input, and jointly computes a mobility-oriented segmentation and the associated motion attributes. Shape2Motion is comprised of two deep neural networks designed for mobility proposal generation and mobility optimization, respectively. The key contribution of these networks is the novel motion-driven features and losses used in both motion part segmentation and motion attribute estimation. This is based on the observation that the movement of a functional part preserves the shape structure. We evaluate Shape2Motion with a newly proposed benchmark for mobility analysis of 3D shapes. Results demonstrate that our method achieves the state-of-the-art performance both in terms of motion part segmentation and motion attribute estimation.

8. The RBO Dataset of Articulated Objects and Interactions

RBO, IJRR 2019

πŸ“„ Paper | 🌐 Project Page

Abstract

We present a dataset with models of 14 articulated objects commonly found in human environments and with RGB-D video sequences and wrenches recorded of human interactions with them. The 358 interaction sequences total 67 minutes of human manipulation under varying experimental conditions (type of interaction, lighting, perspective, and background). Each interaction with an object is annotated with the ground truth poses of its rigid parts and the kinematic state obtained by a motion capture system. For a subset of 78 sequences (25 minutes), we also measured the interaction wrenches. The object models contain textured three-dimensional triangle meshes of each link and their motion constraints. We provide Python scripts to download and visualize the data.

9. 3D Shape Segmentation with Projective Convolutional Networks

ShapePFCN, CVPR 2017

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

Abstract

This paper introduces a deep architecture for segmenting 3D objects into their labeled semantic parts. Our architecture combines image-based Fully Convolutional Networks (FCNs) and surface-based Conditional Random Fields (CRFs) to yield coherent segmentations of 3D shapes. The image-based FCNs are used for efficient view-based reasoning about 3D object parts. Through a special projection layer, FCN outputs are effectively aggregated across multiple views and scales, then are projected onto the 3D object surfaces. Finally, a surface-based CRF combines the projected outputs with geometric consistency cues to yield coherent segmentations. The whole architecture (multi-view FCNs and CRF) is trained end-to-end. Our approach significantly outperforms the existing state-of-the-art methods in the currently largest segmentation benchmark (ShapeNet). Finally, we demonstrate promising segmentation results on noisy 3D shapes acquired from consumer-grade depth cameras.

Dataset Augmentation

1. S2O: Static to Openable Enhancement for Articulated 3D Objects

S2O, arXiv 2024

πŸ“„ Paper | 🌐 Project Page

  • Dataset: Articulated Containers Dataset
  • Input: 3D mesh
Abstract

Despite much progress in large 3D datasets there are currently few interactive 3D object datasets, and their scale is limited due to the manual effort required in their construction. We introduce the static to openable (S2O) task which creates interactive articulated 3D objects from static counterparts through openable part detection, motion prediction, and interior geometry completion. We formulate a unified framework to tackle this task, and curate a challenging dataset of openable 3D objects that serves as a test bed for systematic evaluation. Our experiments benchmark methods from prior work and simple yet effective heuristics for the S2O task. We find that turning static 3D objects into interactively openable counterparts is possible but that all methods struggle to generalize to realistic settings of the task, and we highlight promising future work directions.

2. Semi-Weakly Supervised Object Kinematic Motion Prediction

SWMP, CVPR 2023

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: PartNet-Mobility, PartNet
  • Input: Single Point Cloud, Segmentation
Abstract

In this paper, we tackle the task of object kinematic motion prediction problem in a semi-weakly supervised manner. Our key observations are two-fold. First, although 3D dataset with fully annotated motion labels is limited, there are existing datasets and methods for object part semantic segmentation at large scale. Second, semantic part segmentation and mobile part segmentation is not always consistent but it is possible to detect the mobile parts from the underlying 3D structure. Towards this end, we propose a graph neural network to learn the map between hierarchical part-level segmentation and mobile parts parameters, which are further refined based on geometric alignment. This network can be first trained on PartNet-Mobility dataset with fully labeled mobility information and then applied on PartNet dataset with fine-grained and hierarchical part-level segmentation. The network predictions yield a large scale of 3D objects with pseudo labeled mobility information and can further be used for weakly-supervised learning with pre-existing segmentation. Our experiments show there are significant performance boosts with the augmented data for previous method designed for kinematic motion prediction on 3D partial scans.

Digital Twins

1. URDFormer: A Pipeline for Constructing Articulated Simulation Environments from Real-World Images

URDFormer, RSS 2024

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Agnostic
  • Input: RGB-D images
Abstract

Constructing simulation scenes that are both visually and physically realistic is a problem of practical interest in domains ranging from robotics to computer vision. This problem has become even more relevant as researchers wielding large data-hungry learning methods seek new sources of training data for physical decision-making systems. However, building simulation models is often still done by hand. A graphic designer and a simulation engineer work with predefined assets to construct rich scenes with realistic dynamic and kinematic properties. While this may scale to small numbers of scenes, to achieve the generalization properties that are required for data-driven robotic control, we require a pipeline that is able to synthesize large numbers of realistic scenes, complete with 'natural' kinematic and dynamic structures. To attack this problem, we develop models for inferring structure and generating simulation scenes from natural images, allowing for scalable scene generation from web-scale datasets. To train these image-to-simulation models, we show how controllable text-to-image generative models can be used in generating paired training data that allows for modeling of the inverse problem, mapping from realistic images back to complete scene models. We show how this paradigm allows us to build large datasets of scenes in simulation with semantic and physical realism. We present an integrated end-to-end pipeline that generates simulation scenes complete with articulated kinematic and dynamic structures from real-world images and use these for training robotic control policies. We then robustly deploy in the real world for tasks like articulated object manipulation. In doing so, our work provides both a pipeline for large-scale generation of simulation environments and an integrated system for training robust robotic control policies in the resulting environments.

2. Real2Code: Reconstruct Articulated Objects via Code Generation

Real2Code, arXiv 2024

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: PartNet-Mobility
  • Input: RGB Images
Abstract

We present Real2Code, a novel approach to reconstructing articulated objects via code generation. Given visual observations of an object, we first reconstruct its part geometry using an image segmentation model and a shape completion model. We then represent the object parts with oriented bounding boxes, which are input to a fine-tuned large language model (LLM) to predict joint articulation as code. By leveraging pre-trained vision and language models, our approach scales elegantly with the number of articulated parts, and generalizes from synthetic training data to real world objects in unstructured environments. Experimental results demonstrate that Real2Code significantly outperforms previous state-of-the-art in reconstruction accuracy, and is the first approach to extrapolate beyond objects' structural complexity in the training set, and reconstructs objects with up to 10 articulated parts. When incorporated with a stereo reconstruction model, Real2Code also generalizes to real world objects from a handful of multi-view RGB images, without the need for depth or camera information.

3. RoboStudio: A Physics Consistent World Model for Robotic Arm with Hybrid Representation

RoboStudio, arXiv 2024

πŸ“„ Paper | 🌐 Project Page

  • Dataset: Real2Sim
  • Input: RGB Images
Abstract

Real2Sim2Real plays a critical role in robotic arm control and reinforcement learning, yet bridging this gap remains a significant challenge due to the complex physical properties of robots and the objects they manipulate. Existing methods lack a comprehensive solution to accurately reconstruct real-world objects with spatial representations and their associated physics attributes. We propose a Real2Sim pipeline with a hybrid representation model that integrates mesh geometry, 3D Gaussian kernels, and physics attributes to enhance the digital asset representation of robotic arms. This hybrid representation is implemented through a Gaussian-Mesh-Pixel binding technique, which establishes an isomorphic mapping between mesh vertices and Gaussian models. This enables a fully differentiable rendering pipeline that can be optimized through numerical solvers, achieves high-fidelity rendering via Gaussian Splatting, and facilitates physically plausible simulation of the robotic arm's interaction with its environment using mesh-based methods.

4. DexSim2Real2: Building Explicit World Model for Precise Articulated Object Dexterous Manipulation

DexSim2Real2, arXiv 2024

πŸ“„ Paper | 🌐 Project Page

  • Dataset: Shape2Motion, PartNet-Mobility,
  • Input: Point Cloud
Abstract

Articulated object manipulation is ubiquitous in daily life. In this paper, we present DexSim2Real2, a novel robot learning framework for goal-conditioned articulated object manipulation using both two-finger grippers and multi-finger dexterous hands. The key of our framework is constructing an explicit world model of unseen articulated objects through active one-step interactions. This explicit world model enables sampling-based model predictive control to plan trajectories achieving different manipulation goals without needing human demonstrations or reinforcement learning. It first predicts an interaction motion using an affordance estimation network trained on self-supervised interaction data or videos of human manipulation from the internet. After executing this interaction on the real robot, the framework constructs a digital twin of the articulated object in simulation based on the two point clouds before and after the interaction. For dexterous multi-finger manipulation, we propose to utilize eigengrasp to reduce the high-dimensional action space, enabling more efficient trajectory searching. Extensive experiments validate the framework's effectiveness for precise articulated object manipulation in both simulation and the real world using a two-finger gripper and a 16-DoF dexterous hand. The robust generalizability of the explicit world model also enables advanced manipulation strategies, such as manipulating with different tools.

5. ACDC: Automated Creation of Digital Cousins for Robust Policy Learning

ACDC, CoRL 2024

πŸ“„ Paper | 🌐 Project Page

  • Dataset: BEHAVIOR-1K
  • Input: Single RGB Image
Abstract

Training robot policies in the real world can be unsafe, costly, and difficult to scale. Simulation serves as an inexpensive and potentially limitless source of training data, but suffers from the semantics and physics disparity between simulated and real-world environments. These discrepancies can be minimized by training in digital twins, which serve as virtual replicas of a real scene but are expensive to generate and cannot produce cross-domain generalization. To address these limitations, we propose the concept of digital cousins, a virtual asset or scene that, unlike a digital twin, does not explicitly model a real-world counterpart but still exhibits similar geometric and semantic affordances. As a result, digital cousins simultaneously reduce the cost of generating an analogous virtual environment while also facilitating better robustness during sim-to-real domain transfer by providing a distribution of similar training scenes. Leveraging digital cousins, we introduce a novel method for their automated creation, and propose a fully automated real-to-sim-to-real pipeline for generating fully interactive scenes and training robot policies that can be deployed zero-shot in the original scene. We find that digital cousin scenes that preserve geometric and semantic affordances can be produced automatically, and can be used to train policies that outperform policies trained on digital twins, achieving 90% vs. 25% success rates under zero-shot sim-to-real transfer.Β 

6. PARIS: Part-level Reconstruction and Motion Analysis for Articulated Objects

PARIS, ICCV 2023

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: PartNet-Mobility, MultiScan
  • Input: Two Sets of Multi-view Images
Abstract

We design a self-supervised approach without relying any 3D supervision, semantic or motion annotations. The key idea is that we separate the parts from two-state observations by leveraging motion as a cue. Since the motion accounts for the inconsistency between two states, we optimize the motion parameters by registering the moving parts from the input states t to a canonical state t*. During registration, the component that agrees with the transformation is extracted as the movable part. And the one remaining still is extracted as the static part.

7. Building Digital Twins of Articulated Objects and Scenes through Interactive Perception

Ditto, Thesis

πŸ“„ Paper

  • Level: Category-Level
Abstract

nan

Generation

1. Sync4D: Video Guided Controllable Dynamics for Physics-Based 4D Generation

Sync4D, arXiv 2024

πŸ“„ Paper | 🌐 Project Page

  • Input: Prompt, RGB Video
Abstract

In this work, we introduce a novel approach for creating controllable dynamics in 3D-generated Gaussians using casually captured reference videos. Our method transfers the motion of objects from reference videos to a variety of generated 3D Gaussians across different categories, ensuring precise and customizable motion transfer. We achieve this by employing blend skinning-based non-parametric shape reconstruction to extract the shape and motion of reference objects. This process involves segmenting the reference objects into motion-related parts based on skinning weights and establishing shape correspondences with generated target shapes. To address shape and temporal inconsistencies prevalent in existing methods, we integrate physical simulation, driving the target shapes with matched motion. This integration is optimized through a displacement loss to ensure reliable and genuine dynamics. Our approach supports diverse reference inputs, including humans, quadrupeds, and articulated objects, and can generate dynamics of arbitrary length, providing enhanced fidelity and applicability. Unlike methods heavily reliant on diffusion video generation models, our technique offers specific and high-quality motion transfer, maintaining both shape integrity and temporal consistency.

2. Puppet-Master: Scaling Interactive Video Generation as a Motion Prior for Part-Level Dynamics

Puppet-Master, arXiv 2024

πŸ“„ Paper | 🌐 Project Page

  • Dataset: Objaverse
  • Input: Single RGB Image, motion trajectories
Abstract

We present Puppet-Master, an interactive video generative model that can serve as a motion prior for part-level dynamics. At test time, given a single image and a sparse set of motion trajectories (i.e., drags), Puppet-Master can synthesize a video depicting realistic part-level motion faithful to the given drag interactions. This is achieved by fine-tuning a large-scale pre-trained video diffusion model, for which we propose a new conditioning architecture to inject the dragging control effectively. More importantly, we introduce the all-to-first attention mechanism, a drop-in replacement for the widely adopted spatial attention modules, which significantly improves generation quality by addressing the appearance and background issues in existing models. Unlike other motion-conditioned video generators that are trained on in-the-wild videos and mostly move an entire object, Puppet-Master is learned from Objaverse-Animation-HQ, a new dataset of curated part-level motion clips. We propose a strategy to automatically filter out sub-optimal animations and augment the synthetic renderings with meaningful motion trajectories. Puppet-Master generalizes well to real images across various categories and outperforms existing methods in a zero-shot manner on a real-world benchmark.

3. PhysPart: Physically Plausible Part Completion for Interactable Objects

PhysPart, arXiv 2024

πŸ“„ Paper

  • Dataset: GAPartNet
  • Input: Single Point Cloud
Abstract

Interactable objects are ubiquitous in our daily lives. Recent advances in 3D generative models make it possible to automate the modeling of these objects, benefiting a range of applications from 3D printing to the creation of robot simulation environments. However, while significant progress has been made in modeling 3D shapes and appearances, modeling object physics, particularly for interactable objects, remains challenging due to the physical constraints imposed by inter-part motions. In this paper, we tackle the problem of physically plausible part completion for interactable objects, aiming to generate 3D parts that not only fit precisely into the object but also allow smooth part motions. To this end, we propose a diffusion-based part generation model that utilizes geometric conditioning through classifier-free guidance and formulates physical constraints as a set of stability and mobility losses to guide the sampling process. Additionally, we demonstrate the generation of dependent parts, paving the way toward sequential part generation for objects with complex part-whole hierarchies. Experimentally, we introduce a new metric for measuring physical plausibility based on motion success rates. Our model outperforms existing baselines over shape and physical metrics, especially those that do not adequately model physical constraints. We also demonstrate our applications in 3D printing, robot manipulation, and sequential part generation, showing our strength in realistic tasks with the demand for high physical plausibility.

4. SINGAPO: Single Image Controlled Generation of Articulated Parts in Object

SINGAPO, arXiv 2024

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Level
  • Dataset: PartNet-Mobility
  • Input: Single RGB Image
Abstract

We address the challenge of creating 3D assets for household articulated objects from a single image. Prior work on articulated object creation either requires multi-view multi-state input, or only allows coarse control over the generation process. These limitations hinder the scalability and practicality for articulated object modeling. In this work, we propose a method to generate articulated objects from a single image. Observing the object in resting state from an arbitrary view, our method generates an articulated object that is visually consistent with the input image. To capture the ambiguity in part shape and motion posed by a single view of the object, we design a diffusion model that learns the plausible variations of objects in terms of geometry and kinematics. To tackle the complexity of generating structured data with attributes in multiple domains, we design a pipeline that produces articulated objects from high-level structure to geometric details in a coarse-to-fine manner, where we use a part connectivity graph and part abstraction as proxies. Our experiments show that our method outperforms the state-of-the-art in articulated object creation by a large margin in terms of the generated object realism, resemblance to the input image, and reconstruction quality.

5. NAP: Neural 3D Articulation Prior

NAP, NIPS 2023

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

Abstract

We propose Neural 3D Articulation Prior (NAP), the first 3D deep generative model to synthesize 3D articulated object models. Despite the extensive research on generating 3D objects, compositions, or scenes, there remains a lack of focus on capturing the distribution of articulated objects, a common object category for human and robot interaction. To generate articulated objects, we first design a novel articulation tree/graph parameterization and then apply a diffusion-denoising probabilistic model over this representation where articulated objects can be generated via denoising from random complete graphs. In order to capture both the geometry and the motion structure whose distribution will affect each other, we design a graph-attention denoising network for learning the reverse diffusion process. We propose a novel distance that adapts widely used 3D generation metrics to our novel task to evaluate generation quality, and experiments demonstrate our high performance in articulated object generation. We also demonstrate several conditioned generation applications, including Part2Motion, PartNet-Imagination, Motion2Part, and GAPart2Object.

6. CAGE: Controllable Articulation Generation

CAGE, arXiv 2023

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Dataset: PartNet-Mobility
Abstract

We address the challenge of generating 3D articulated objects in a controllable fashion. Currently, modeling articulated 3D objects is either achieved through laborious manual authoring, or using methods from prior work that are hard to scale and control directly. We leverage the interplay between part shape, connectivity, and motion using a denoising diffusion-based method with attention modules designed to extract correlations between part attributes. Our method takes an object category label and a part connectivity graph as input and generates an object's geometry and motion parameters. The generated objects conform to user-specified constraints on the object category, part shape, and part articulation. Our experiments show that our method outperforms the state-of-the-art in articulated object generation, producing more realistic objects while conforming better to user constraints.

Implicit Representation

1. SM$^3$: Self-Supervised Multi-task Modeling with Multi-view 2D Images for Articulated Objects

SM$^3$, arXiv 2024

πŸ“„ Paper

  • Dataset: PartNet-Mobility
  • Input: Multiple RGB Images
Abstract

Reconstructing real-world objects and estimating their movable joint structures are pivotal technologies within the field of robotics. Previous research has predominantly focused on supervised approaches, relying on extensively annotated datasets to model articulated objects within limited categories. However, this approach falls short of effectively addressing the diversity present in the real world. To tackle this issue, we propose a self-supervised interaction perception method, referred to as SM3, which leverages multi-view RGB images captured before and after interaction to model articulated objects, identify the movable parts, and infer the parameters of their rotating joints. By constructing 3D geometries and textures from the captured 2D images, SM3 achieves integrated optimization of movable part and joint parameters during the reconstruction process, obviating the need for annotations. Furthermore, we introduce the MMArt dataset, an extension of PartNet-Mobility, encompassing multi-view and multi-modal data of articulated objects spanning diverse categories. Evaluations demonstrate that SM3 surpasses existing benchmarks across various categories and objects, while its adaptability in real-world scenarios has been thoroughly validated.

2. Knowledge NeRF: Few-shot Novel View Synthesis for Dynamic Articulated Objects

Knowledge NeRF, arXiv 2024

πŸ“„ Paper | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: NeRF Synthetic Dataset, Shiny Blender Dataset
  • Input: Multiple RGB Images
Abstract

We present Knowledge NeRF to synthesize novel views for dynamic scenes.Reconstructing dynamic 3D scenes from few sparse views and rendering them from arbitrary perspectives is a challenging problem with applications in various domains. Previous dynamic NeRF methods learn the deformation of articulated objects from monocular videos. However, qualities of their reconstructed scenes are clearly reconstruct dynamic scenes, we propose a new framework by considering two frames at a time.We pretrain a NeRF model for an articulated object.When articulated objects moves, Knowledge NeRF learns to generate novel views at the new state by incorporating past knowledge in the pretrained NeRF model with minimal observations in the present state. We propose a projection module to adapt NeRF for dynamic scenes, learning the correspondence between pretrained knowledge base and current states. Experimental results demonstrate the effectiveness of our method in reconstructing dynamic 3D scenes with 5 input images in one state. Knowledge NeRF is a new pipeline and promising solution for novel view synthesis in dynamic articulated objects.

3. Neural Implicit Representation for Building Digital Twins of Unknown Articulated Objects

DigitalTwinArt, CVPR 2024

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: PARIS, PartNet-Mobility
  • Input: Multiple RGB Images
Abstract

We address the problem of building digital twins of unknown articulated objects from two RGBD scans of the object at different articulation states. We decompose the problem into two stages, each addressing distinct aspects. Our method first reconstructs object-level shape at each state, then recovers the underlying articulation model including part segmentation and joint articulations that associate the two states. By explicitly modeling point-level correspondences and exploiting cues from images, 3D reconstructions, and kinematics, our method yields more accurate and stable results compared to prior work. It also handles more than one movable part and does not rely on any object shape or structure priors.

4. REACTO: Reconstructing Articulated Objects from a Single Video

REACTO, CVPR 2024

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: PartNet-Mobility
  • Input: RGB Sequence
Abstract

In this paper, we address the challenge of reconstructing general articulated 3D objects from a single video. Existing works employing dynamic neural radiance fields have advanced the modeling of articulated objects like humans and animals from videos, but face challenges with piece-wise rigid general articulated objects due to limitations in their deformation models. To tackle this, we propose Quasi-Rigid Blend Skinning, a novel deformation model that enhances the rigidity of each part while maintaining flexible deformation of the joints. Our primary insight combines three distinct approaches: 1) an enhanced bone rigging system for improved component modeling, 2) the use of quasi-sparse skinning weights to boost part rigidity and reconstruction fidelity, and 3) the application of geodesic point assignment for precise motion and seamless deformation. Our method outperforms previous works in producing higher-fidelity 3D reconstructions of general articulated objects, as demonstrated on both real and synthetic datasets.

5. Articulate your NeRF: Unsupervised articulated object modeling via conditional view synthesis

Articulate your NeRF, arXiv 2024

πŸ“„ Paper

  • Level: Category-Agnostic
  • Dataset: PartNet-Mobility
  • Input: RGB Images
Abstract

We propose a novel unsupervised method to learn the pose and part-segmentation of articulated objects with rigid parts. Given two observations of an object in different articulation states, our method learns the geometry and appearance of object parts by using an implicit model from the first observation, distils the part segmentation and articulation from the second observation while rendering the latter observation. Additionally, to tackle the complexities in the joint optimization of part segmentation and articulation, we propose a voxel grid-based initialization strategy and a decoupled optimization procedure. Compared to the prior unsupervised work, our model obtains significantly better performance, and generalizes to objects with multiple parts while it can be efficiently from few views for the latter observation.

6. NARF24: Estimating Articulated Object Structure for Implicit Rendering

NARF24, arXiv 2024

πŸ“„ Paper

  • Dataset: Progress-Tools Dataset, Sparse Segments Dataset
  • Input: Segmented Images
Abstract

Articulated objects and their representations pose a difficult problem for robots. These objects require not only representations of geometry and texture, but also of the various connections and joint parameters that make up each articulation. We propose a method that learns a common Neural Radiance Field (NeRF) representation across a small number of collected scenes. This representation is combined with a parts-based image segmentation to produce an implicit space part localization, from which the connectivity and joint parameters of the articulated object can be estimated, thus enabling configuration-conditioned rendering.

7. LEIA: Latent View-invariant Embeddings for Implicit 3D Articulation

LEIA, ECCV 2024

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Dataset: PartNet-Mobility
  • Input: RGB Images
Abstract

Neural Radiance Fields (NeRFs) have revolutionized the reconstruction of static scenes and objects in 3D, offering unprecedented quality. However, extending NeRFs to model dynamic objects or object articulations remains a challenging problem. Previous works have tackled this issue by focusing on part-level reconstruction and motion estimation for objects, but they often rely on heuristics regarding the number of moving parts or object categories, which can limit their practical use. In this work, we introduce LEIA, a novel approach for representing dynamic 3D objects. Our method involves observing the object at distinct time steps or "states" and conditioning a hypernetwork on the current state, using this to parameterize our NeRF. This approach allows us to learn a view-invariant latent representation for each state. We further demonstrate that by interpolating between these states, we can generate novel articulation configurations in 3D space that were previously unseen. Our experimental results highlight the effectiveness of our method in articulating objects in a manner that is independent of the viewing angle and joint configuration. Notably, our approach outperforms previous methods that rely on motion information for articulation registration.

8. CARTO: Category and Joint Agnostic Reconstruction of ARTiculated Objects

CARTO, CVPR 2023

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: PartNet-Mobility
  • Input: Single RGB Image
Abstract

We present CARTO, a novel approach for reconstructing multiple articulated objects from a single stereo RGB observation. We use implicit object-centric representations and learn a single geometry and articulation decoder for multiple object categories. Despite training on multiple categories, our decoder achieves a comparable reconstruction accuracy to methods that train bespoke decoders separately for each category. Combined with our stereo image encoder we infer the 3D shape, 6D pose, size, joint type, and the joint state of multiple unknown objects in a single forward pass. Our method achieves a 20.4% absolute improvement in mAP 3D IOU50 for novel instances when compared to a two-stage pipeline. Inference time is fast and can run on a NVIDIA TITAN XP GPU at 1 HZ for eight or less objects present. While only trained on simulated data, CARTO transfers to real-world object instances. Code and evaluation data is linked below.

9. NAISR: A 3D Neural Additive Model for Interpretable Shape Representation

NAISR, arXiv 2023

πŸ“„ Paper | πŸ’» Code

  • Input: Shape
Abstract

Deep implicit functions (DIFs) have emerged as a powerful paradigm for many computer vision tasks such as 3D shape reconstruction, generation, registration, completion, editing, and understanding. However, given a set of 3D shapes with associated covariates there is at present no shape representation method which allows to precisely represent the shapes while capturing the individual dependencies on each covariate. Such a method would be of high utility to researchers to discover knowledge hidden in a population of shapes. For scientific shape discovery, we propose a 3D Neural Additive Model for Interpretable Shape Representation (NAISR) which describes individual shapes by deforming a shape atlas in accordance to the effect of disentangled covariates. Our approach captures shape population trends and allows for patient-specific predictions through shape transfer. NAISR is the first approach to combine the benefits of deep implicit shape representations with an atlas deforming according to specified covariates. We evaluate NAISR with respect to shape reconstruction, shape disentanglement, shape evolution, and shape transfer on three datasets: 1) Starman, a simulated 2D shape dataset; 2) the ADNI hippocampus 3D shape dataset; and 3) a pediatric airway 3D shape dataset. Our experiments demonstrate that Starman achieves excellent shape reconstruction performance while retaining interpretability.

10. 3D Implicit Transporter for Temporally Consistent Keypoint Discovery

3D Implicit Transporter, ICCV 2023

πŸ“„ Paper | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: PartNet-Mobility, ITOP, Rodent3D
  • Input: Paired Point Clouds
Abstract

Keypoint-based representation has proven advantageous in various visual and robotic tasks. However, the existing 2D and 3D methods for detecting keypoints mainly rely on geometric consistency to achieve spatial alignment, neglecting temporal consistency. To address this issue, the Transporter method was introduced for 2D data, which reconstructs the target frame from the source frame to incorporate both spatial and temporal information. However, the direct application of the Transporter to 3D point clouds is infeasible due to their structural differences from 2D images. Thus, we propose the first 3D version of the Transporter, which leverages hybrid 3D representation, cross attention, and implicit reconstruction. We apply this new learning system on 3D articulated objects and nonrigid animals (humans and rodents) and show that learned keypoints are spatio-temporally consistent. Additionally, we propose a closed-loop control strategy that utilizes the learned keypoints for 3D object manipulation and demonstrate its superior performance.

11. Template-free Articulated Neural Point Clouds for Reposable View Synthesis

Uzolas et al., NIPS 2023

πŸ“„ Paper | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: Robots, Blender, ZJU-MoCap
  • Input: Multiple RGB Images
Abstract

Dynamic Neural Radiance Fields (NeRFs) achieve remarkable visual quality when synthesizing novel views of time-evolving 3D scenes. However, the common reliance on backward deformation fields makes reanimation of the captured object poses challenging. Moreover, the state of the art dynamic models are often limited by low visual fidelity, long reconstruction time or specificity to narrow application domains. In this paper, we present a novel method utilizing a point-based representation and Linear Blend Skinning (LBS) to jointly learn a Dynamic NeRF and an associated skeletal model from even sparse multi-view video. Our forward-warping approach achieves state-of-the-art visual fidelity when synthesizing novel views and poses while significantly reducing the necessary learning time when compared to existing work. We demonstrate the versatility of our representation on a variety of articulated objects from common datasets and obtain reposable 3D reconstructions without the need of object-specific skeletal templates.

12. Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto, CVPR 2022

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Level
  • Dataset: Shape2Motion
  • Input: Two Point Clouds
Abstract

Digitizing physical objects into the virtual world has the potential to unlock new research and applications in embodied AI and mixed reality. This work focuses on recreating interactive digital twins of real-world articulated objects, which can be directly imported into virtual environments. We introduce Ditto to learn articulation model estimation and 3D geometry reconstruction of an articulated object through interactive perception. Given a pair of visual observations of an articulated object before and after interaction, Ditto reconstructs part-level geometry and estimates the articulation model of the object. We employ implicit neural representations for joint geometry and articulation modeling. Our experiments show that Ditto effectively builds digital twins of articulated objects in a category-agnostic way. We also apply Ditto to real-world objects and deploy the recreated digital twins in physical simulation.

13. CLA-NeRF: Category-Level Articulated Neural Radiance Field

CLA-NeRF, ICRA 2022

πŸ“„ Paper

  • Level: Category-Level
  • Dataset: PartNet-Mobility
  • Input: Multiple RGB Images
Abstract

We address the task of predicting what parts of an object can open and how they move when they do so. The input is a single image of an object, and as output we detect what parts of the object can open, and the motion parameters describing the articulation of each openable part. To tackle this task, we create two datasets of 3D objects: OPDSynth based on existing synthetic objects, and OPDReal based on RGBD reconstructions of real objects. We then design OPDRCNN, a neural architecture that detects openable parts and predicts their motion parameters. Our experiments show that this is a challenging task especially when considering generalization across object categories, and the limited amount of information in a single image. Our architecture outperforms baselines and prior work especially for RGB image inputs.

14. Watch It Move: Unsupervised Discovery of 3D Joints for Re-Posing of Articulated Objects

Watch It Move, CVPR 2022

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: ZJU-MoCap
  • Input: Multi-view RGB Sequence
Abstract

Rendering articulated objects while controlling their poses is critical to applications such as virtual reality or animation for movies. Manipulating the pose of an object, however, requires the understanding of its underlying structure, that is, its joints and how they interact with each other. Unfortunately, assuming the structure to be known, as existing methods do, precludes the ability to work on new object categories. We propose to learn both the appearance and the structure of previously unseen articulated objects by observing them move from multiple views, with no joints annotation supervision, or information about the structure. We observe that 3D points that are static relative to one another should belong to the same part, and that adjacent parts that move relative to each other must be connected by a joint. To leverage this insight, we model the object parts in 3D as ellipsoids, which allows us to identify joints. We combine this explicit representation with an implicit one that compensates for the approximation introduced. We show that our method works for different structures, from quadrupeds, to single-arm robots, to humans.

15. Self-supervised Neural Articulated Shape and Appearance Models

NASAM, CVPR 2022

πŸ“„ Paper | 🌐 Project Page

  • Level: Category-Level
  • Dataset: PartNet-Mobility
  • Input: Shape Code
Abstract

Learning geometry, motion, and appearance priors of object classes is important for the solution of a large variety of computer vision problems. While the majority of approaches has focused on static objects, dynamic objects, especially with controllable articulation, are less explored. We propose a novel approach for learning a representation of the geometry, appearance, and motion of a class of articulated objects given only a set of color images as input. In a self-supervised manner, our novel representation learns shape, appearance, and articulation codes that enable independent control of these semantic dimensions. Our model is trained end-to-end without requiring any articulation annotations. Experiments show that our approach performs well for different joint types, such as revolute and prismatic joints, as well as different combinations of these joints. Compared to state of the art that uses direct 3D supervision and does not output appearance, we recover more faithful geometry and appearance from 2D observations only. In addition, our representation enables a large variety of applications, such as few-shot reconstruction, the generation of novel articulations, and novel view-synthesis.

16. NARF22: Neural Articulated Radiance Fields for Configuration-Aware Rendering

NARF22, IROS 2022

πŸ“„ Paper | 🌐 Project Page

  • Dataset: Progress Tools
  • Input: Multiple RGB Images
Abstract

Articulated objects pose a unique challenge for robotic perception and manipulation. Their increased number of degrees-of-freedom makes tasks such as localization computationally difficult, while also making the process of real-world dataset collection unscalable. With the aim of addressing these scalability issues, we propose Neural Articulated Radiance Fields (NARF22), a pipeline which uses a fully-differentiable, configuration-parameterized Neural Radiance Field (NeRF) as a means of providing high quality renderings of articulated objects. NARF22 requires no explicit knowledge of the object structure at inference time. We propose a two-stage parts-based training mechanism which allows the object rendering models to generalize well across the configuration space even if the underlying training data has as few as one configuration represented. We demonstrate the efficacy of NARF22 by training configurable renderers on a real-world articulated tool dataset collected via a Fetch mobile manipulation robot. We show the applicability of the model to gradient-based inference methods through a configuration estimation and 6 degree-of-freedom pose refinement task.

17. Unsupervised Pose-Aware Part Decomposition for 3D Articulated Objects

PPD, ECCV 2021

πŸ“„ Paper

  • Level: Category-Agnostic
  • Dataset: Shape2motion, Partnet-Mobility
  • Input: Single Point Cloud
Abstract

Articulated objects exist widely in the real world. However, previous 3D generative methods for unsupervised part decomposition are unsuitable for such objects, because they assume a spatially fixed part location, resulting in inconsistent part parsing. In this paper, we propose PPD (unsupervised Pose-aware Part Decomposition) to address a novel setting that explicitly targets man-made articulated objects with mechanical joints, considering the part poses. We show that category-common prior learning for both part shapes and poses facilitates the unsupervised learning of (1) part decomposition with non-primitive-based implicit representation, and (2) part pose as joint parameters under single-frame shape supervision. We evaluate our method on synthetic and real datasets, and we show that it outperforms previous works in consistent part parsing of the articulated objects based on comparable part pose estimation performance to the supervised baseline

18. A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation

A-SDF, ICCV 2021

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Level
  • Dataset: Shape2Motion
  • Input: Single Depth Image
Abstract

Recent work has made significant progress on using implicit functions, as a continuous representation for 3D rigid object shape reconstruction. However, much less effort has been devoted to modeling general articulated objects. Compared to rigid objects, articulated objects have higher degrees of freedom, which makes it hard to generalize to unseen shapes. To deal with the large shape variance, we introduce Articulated Signed Distance Functions (A-SDF) to represent articulated shapes with a disentangled latent space, where we have separate codes for encoding shape and articulation. With this disentangled continuous representation, we demonstrate that we can control the articulation input and animate unseen instances with unseen joint angles. Furthermore, we propose a Test-Time Adaptation inference algorithm to adjust our model during inference. We demonstrate our model generalize well to out-of-distribution and unseen data, e.g., partial point clouds and real-world depth images.

19. StrobeNet: Category-Level Multiview Reconstruction of Articulated Objects

StrobeNet, arXiv 2021

πŸ“„ Paper | 🌐 Project Page

  • Level: Category-Level
  • Dataset: Shape2Motion, PartNet-Mobility
  • Input: A Set of Sparse Images
Abstract

We present StrobeNet, a method for category-level 3D reconstruction of articulating objects from one or more unposed RGB images. Reconstructing general articulating object categories % has important applications, but is challenging since objects can have wide variation in shape, articulation, appearance and topology. We address this by building on the idea of category-level articulation canonicalization -- mapping observations to a canonical articulation which enables correspondence-free multiview aggregation. Our end-to-end trainable neural network estimates feature-enriched canonical 3D point clouds, articulation joints, and part segmentation from one or more unposed images of an object. These intermediate estimates are used to generate a final implicit 3D reconstruction.Our approach reconstructs objects even when they are observed in different articulations in images with large baselines, and animation of reconstructed shapes. Quantitative and qualitative evaluations on different object categories show that our method is able to achieve high reconstruction accuracy, especially as more views are added.

Kinematic Inference

1. A3VLM: Actionable Articulation-Aware Vision Language Model

A3VLM, arXiv 2024

πŸ“„ Paper | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: PartNet-Mobility
  • Input: RGB Image, Text
Abstract

Vision Language Models (VLMs) have received significant attention in recent years in the robotics community. VLMs are shown to be able to perform complex visual reasoning and scene understanding tasks, which makes them regarded as a potential universal solution for general robotics problems such as manipulation and navigation. However, previous VLMs for robotics such as RT-1, RT-2, and ManipLLM have focused on directly learning robot-centric actions. Such approaches require collecting a significant amount of robot interaction data, which is extremely costly in the real world. Thus, we propose A3VLM, an object-centric, actionable, articulation-aware vision language model. A3VLM focuses on the articulation structure and action affordances of objects. Its representation is robot-agnostic and can be translated into robot actions using simple action primitives. Extensive experiments in both simulation benchmarks and real-world settings demonstrate the effectiveness and stability of A3VLM.

2. Discovering Conceptual Knowledge with Analytic Ontology Templates for Articulated Objects

AOT, arXiv 2024

πŸ“„ Paper

  • Dataset: PartNet-Mobility
  • Input: Point Cloud
Abstract

Human cognition can leverage fundamental conceptual knowledge, like geometric and kinematic ones, to appropriately perceive, comprehend and interact with novel objects. Motivated by this finding, we aim to endow machine intelligence with an analogous capability through performing at the conceptual level, in order to understand and then interact with articulated objects, especially for those in novel categories, which is challenging due to the intricate geometric structures and diverse joint types of articulated objects. To achieve this goal, we propose Analytic Ontology Template (AOT), a parameterized and differentiable program description of generalized conceptual ontologies. A baseline approach called AOTNet driven by AOTs is designed accordingly to equip intelligent agents with these generalized concepts, and then empower the agents to effectively discover the conceptual knowledge on the structure and affordance of articulated objects. The AOT-driven approach yields benefits in three key perspectives: i) enabling concept-level understanding of articulated objects without relying on any real training data, ii) providing analytic structure information, and iii) introducing rich affordance information indicating proper ways of interaction. We conduct exhaustive experiments and the results demonstrate the superiority of our approach in understanding and then interacting with articulated objects.

3. Learning to Infer Kinematic Hierarchies for Novel Object Instances

Abdul-Rashid et al., ICRA 2021

πŸ“„ Paper

  • Level: Category-Level
  • Dataset: PartNet-Mobility
  • Input: Single Point Cloud
Abstract

Manipulating an articulated object requires perceiving itskinematic hierarchy: its parts, how each can move, and howthose motions are coupled. Previous work has explored per-ception for kinematics, but none infers a complete kinematichierarchy on never-before-seen object instances, without relyingon a schema or template. We present a novel perception systemthat achieves this goal. Our system infers the moving parts ofan object and the kinematic couplings that relate them. Toinfer parts, it uses a point cloud instance segmentation neuralnetwork and to infer kinematic hierarchies, it uses a graphneural network to predict the existence, direction, and typeof edges (i.e. joints) that relate the inferred parts. We trainthese networks using simulated scans of synthetic 3D models.We evaluate our system on simulated scans of 3D objects, andwe demonstrate a proof-of-concept use of our system to drivereal-world robotic manipulation.

4. Towards Understanding Articulated Objects

Sturm et al., RSSW 2009

πŸ“„ Paper

  • Level: Category-Agnostic
  • Input: Annitated RGB Image
Abstract

Robots operating in home environments must be able to interact with articulated objects such as doors or drawers. Ideally, robots are able to autonomously infer articulation models by observation. In this paper, we present an approach to learn kinematic models by inferring the connectivity of rigid parts and the articulation models for the corresponding links. Our method uses a mixture of parameterized and parameter-free representations. To obtain parameter-free models, we seek for low-dimensional manifolds of latent action variables in order to provide the best explanation of the given observations. The mapping from the constrained manifold of an articulated link to the work space is learned by means of Gaussian process regression. Our approach has been implemented and evaluated using real data obtained in various home environment settings. Finally, we discuss the limitations and possible extensions of the proposed method.

Manipulation

1. ManiDext: Hand-Object Manipulation Synthesis via Continuous Correspondence Embeddings and Residual-Guided Diffusion

ManiDext, arXiv 2024

πŸ“„ Paper | 🌐 Project Page

  • Dataset: GRAB, ARCTIC
  • Input: A sequence of object motions
Abstract

Dynamic and dexterous manipulation of objects presents a complex challenge, requiring the synchronization of hand motions with the trajectories of objects to achieve seamless and physically plausible interactions. In this work, we introduce ManiDext, a unified hierarchical diffusion-based framework for generating hand manipulation and grasp poses based on 3D object trajectories. Our key insight is that accurately modeling the contact correspondences between objects and hands during interactions is crucial. Therefore, we propose a continuous correspondence embedding representation that specifies detailed hand correspondences at the vertex level between the object and the hand. This embedding is optimized directly on the hand mesh in a self-supervised manner, with the distance between embeddings reflecting the geodesic distance. Our framework first generates contact maps and correspondence embeddings on the object's surface. Based on these fine-grained correspondences, we introduce a novel approach that integrates the iterative refinement process into the diffusion process during the second stage of hand pose generation. At each step of the denoising process, we incorporate the current hand pose residual as a refinement target into the network as a condition, guiding the network to correct inaccurate hand poses. Introducing residuals into each denoising step inherently aligns with traditional optimization process, effectively merging generation and refinement into a single unified framework. Extensive experiments demonstrate that our approach can generate physically plausible and highly realistic motions for various tasks, including single and bimanual hand grasping as well as manipulating both rigid and articulated objects.

2. Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking

Wang et al., arXiv 2024

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Input: RGB-D Sequence
Abstract

Articulated object manipulation requires precise object interaction, where the object's axis must be carefully considered. Previous research employed interactive perception for manipulating articulated objects, but typically, open-loop approaches often suffer from overlooking the interaction dynamics. To address this limitation, we present a closed-loop pipeline integrating interactive perception with online axis estimation from segmented 3D point clouds. Our method leverages any interactive perception technique as a foundation for interactive perception, inducing slight object movement to generate point cloud frames of the evolving dynamic scene. These point clouds are then segmented using Segment Anything Model 2 (SAM2), after which the moving part of the object is masked for accurate motion online axis estimation, guiding subsequent robotic actions. Our approach significantly enhances the precision and efficiency of manipulation tasks involving articulated objects. Experiments in simulated environments demonstrate that our method outperforms baseline approaches, especially in tasks that demand precise axis-based control.

3. KinScene: Model-Based Mobile Manipulation of Articulated Scenes

KinScene, arXiv 2024

πŸ“„ Paper | πŸ’» Code

  • Level: Category-Agnostic
  • Input: RGB-D Images, Lidar
Abstract

Sequentially interacting with articulated objects is crucial for a mobile manipulator to operate effectively in everyday environments. To enable long-horizon tasks involving articulated objects, this study explores building scene-level articulation models for indoor scenes through autonomous exploration. While previous research has studied mobile manipulation with articulated objects by considering object kinematic constraints, it primarily focuses on individual-object scenarios and lacks extension to a scene-level context for task-level planning. To manipulate multiple object parts sequentially, the robot needs to reason about the resultant motion of each part and anticipate its impact on future actions. We introduce KinScene, a full-stack approach for long-horizon manipulation tasks with articulated objects. The robot maps the scene, detects and physically interacts with articulated objects, collects observations, and infers the articulation properties. For sequential tasks, the robot plans a feasible series of object interactions based on the inferred articulation model. We demonstrate that our approach repeatably constructs accurate scene-level kinematic and geometric models, enabling long-horizon mobile manipulation in a real-world scene.

4. Robot See Robot Do: Imitating Articulated Object Manipulation with Monocular 4D Reconstruction

Robot See Robot Do, CoRL 2024

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Input: RGB Sequence, multi-view object scan
Abstract

Humans can learn to manipulate new objects by simply watching others; providing robots with the ability to learn from such demonstrations would enable a natural interface specifying new behaviors. This work develops Robot See Robot Do (RSRD), a method for imitating articulated object manipulation from a single monocular RGB human demonstration given a single static multi-view object scan. We first propose 4D Differentiable Part Models (4D-DPM), a method for recovering 3D part motion from a monocular video with differentiable rendering. This analysis-by-synthesis approach uses part-centric feature fields in an iterative optimization which enables the use of geometric regularizers to recover 3D motions from only a single video. Given this 4D reconstruction, the robot replicates object trajectories by planning bimanual arm motions that induce the demonstrated object part motion. By representing demonstrations as part-centric trajectories, RSRD focuses on replicating the demonstration's intended behavior while considering the robot's own morphological limits, rather than attempting to reproduce the hand's motion. We evaluate 4D-DPM's 3D tracking accuracy on ground truth annotated 3D part trajectories and RSRD's physical execution performance on 9 objects across 10 trials each on a bimanual YuMi robot. Each phase of RSRD achieves an average of 87% success rate, for a total end-to-end success rate of 60% across 90 trials. Notably, this is accomplished using only feature fields distilled from large pretrained vision models -- without any task-specific training, fine-tuning, dataset collection, or annotation.

5. UniAff: A Unified Representation of Affordances for Tool Usage and Articulation with Vision-Language Models

UniAff, arXiv 2024

πŸ“„ Paper | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: Novel dataset
  • Input: Single RGB-D
Abstract

Previous studies on robotic manipulation are based on a limited understanding of the underlying 3D motion constraints and affordances. To address these challenges, we propose a comprehensive paradigm, termed UniAff, that integrates 3D object-centric manipulation and task understanding in a unified formulation. Specifically, we constructed a dataset labeled with manipulation-related key attributes, comprising 900 articulated objects from 19 categories and 600 tools from 12 categories. Furthermore, we leverage MLLMs to infer object-centric representations for manipulation tasks, including affordance recognition and reasoning about 3D motion constraints. Comprehensive experiments in both simulation and real-world settings indicate that UniAff significantly improves the generalization of robotic manipulation for tools and articulated objects. We hope that UniAff will serve as a general baseline for unified robotic manipulation tasks in the future.

6. Sim2Real2: Actively Building Explicit Physics Model for Precise Articulated Object Manipulation

Sim2Real2, ICRA 2023

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Level
  • Dataset: Shape2Motion, PartNet-Mobility
  • Input: Two Point Clouds
Abstract

Accurately manipulating articulated objects is a challenging yet important task for real robot applications. In this paper, we present a novel framework called Sim2Real2 to enable the robot to manipulate an unseen articulated object to the desired state precisely in the real world with no human demonstrations. We leverage recent advances in physics simulation and learning-based perception to build the interactive explicit physics model of the object and use it to plan a long-horizon manipulation trajectory to accomplish the task. However, the interactive model cannot be correctly estimated from a static observation. Therefore, we learn to predict the object affordance from a single-frame point cloud, control the robot to actively interact with the object with a one-step action, and capture another point cloud. Further, the physics model is constructed from the two point clouds. Experimental results show that our framework achieves about 70% manipulations with <30% relative error for common articulated objects, and 30% manipulations for difficult objects. Our proposed framework also enables advanced manipulation strategies, such as manipulating with different tools.

7. DexArt: Benchmarking Generalizable Dexterous Manipulation with Articulated Objects

DexArt, CVPR 2023

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Level
  • Dataset: PartNet-Mobility, DexArt
  • Input: Point Cloud
Abstract

To enable general-purpose robots, we will require the robot to operate daily articulated objects as humans do. Current robot manipulation has heavily relied on using a parallel gripper, which restricts the robot to a limited set of objects. On the other hand, operating with a multi-finger robot hand will allow better approximation to human behavior and enable the robot to operate on diverse articulated objects. To this end, we propose a new benchmark called DexArt, which involves Dexterous manipulation with Articulated objects in a physical simulator. In our benchmark, we define multiple complex manipulation tasks, and the robot hand will need to manipulate diverse articulated objects within each task. Our main focus is to evaluate the generalizability of the learned policy on unseen articulated objects. This is very challenging given the high degrees of freedom of both hands and objects. We use Reinforcement Learning with 3D representation learning to achieve generalization. Through extensive studies, we provide new insights into how 3D representation learning affects decision making in RL with 3D point cloud inputs.

8. GAMMA: Generalizable Articulation Modeling and Manipulation for Articulated Objects

GAMMA, arXiv 2023

πŸ“„ Paper | 🌐 Project Page

  • Level: Category-Agnostic
  • Dataset: PartNet-Mobility
  • Input: Point Cloud
Abstract

Articulated objects like cabinets and doors are widespread in daily life. However, directly manipulating 3D articulated objects is challenging because they have diverse geometrical shapes, semantic categories, and kinetic constraints. Prior works mostly focused on recognizing and manipulating articulated objects with specific joint types. They can either estimate the joint parameters or distinguish suitable grasp poses to facilitate trajectory planning. Although these approaches have succeeded in certain types of articulated objects, they lack generalizability to unseen objects, which significantly impedes their application in broader scenarios. In this paper, we propose a novel framework of Generalizable Articulation Modeling and Manipulating for Articulated Objects (GAMMA), which learns both articulation modeling and grasp pose affordance from diverse articulated objects with different categories. In addition, GAMMA adopts adaptive manipulation to iteratively reduce the modeling errors and enhance manipulation performance. We train GAMMA with the PartNet-Mobility dataset and evaluate with comprehensive experiments in SAPIEN simulation and real-world Franka robot. Results show that GAMMA significantly outperforms SOTA articulation modeling and manipulation algorithms in unseen and cross-category articulated objects.

9. Part-Guided 3D RL for Sim2Real Articulated Object Manipulation

Xie et al., RA-L 2023

πŸ“„ Paper | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: PartNet-Mobility
  • Input: RGB-D
Abstract

Manipulating unseen articulated objects through visual feedback is a critical but challenging task for real robots. Existing learning-based solutions mainly focus on visual affordance learning or other pre-trained visual models to guide manipulation policies, which face challenges for novel instances in real-world scenarios. In this letter, we propose a novel part-guided 3D RL framework, which can learn to manipulate articulated objects without demonstrations. We combine the strengths of 2D segmentation and 3D RL to improve the efficiency of RL policy training. To improve the stability of the policy on real robots, we design a Frame-consistent Uncertainty-aware Sampling (FUS) strategy to get a condensed and hierarchical 3D representation. In addition, a single versatile RL policy can be trained on multiple articulated object manipulation tasks simultaneously in simulation and shows great generalizability to novel categories and instances. Experimental results demonstrate the effectiveness of our framework in both simulation and real-world settings.

10. Learning Part Motion of Articulated Objects Using Spatially Continuous Neural Implicit Representations

Schiavi et al., ICRA 2023

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Level
  • Dataset: PartNet-Mobility
  • Input: Point Cloud
Abstract

Interactions with articulated objects are a challenging but important task for mobile robots. To tackle this challenge, we propose a novel closed-loop control pipeline, which integrates manipulation priors from affordance estimation with sampling-based whole-body control. We introduce the concept of agent-aware affordances which fully reflect the agent's capabilities and embodiment and we show that they outperform their state-of-the-art counterparts which are only conditioned on the end-effector geometry. Additionally, closed-loop affordance inference is found to allow the agent to divide a task into multiple non-continuous motions and recover from failure and unexpected states. Finally, the pipeline is able to perform long-horizon mobile manipulation tasks, i.e. opening and closing an oven, in the real world with high success rates (opening: 71%, closing: 72%).

11. GAPartNet: Cross-Category Domain-Generalizable Object Perception and Manipulation via Generalizable and Actionable Parts

GAPartNet, CVPR 2023

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Agnostic
  • Input: Single Point Cloud
Abstract

For years, researchers have been devoted to generalizable object perception and manipulation, where cross-category generalizability is highly desired yet underexplored. In this work, we propose to learn such cross-category skills via Generalizable and Actionable Parts (GAParts). By identifying and defining 9 GAPart classes (lids, handles, etc.) in 27 object categories, we construct a large-scale part-centric interactive dataset, GAPartNet, where we provide rich, part-level annotations (semantics, poses) for 8,489 part instances on 1,166 objects. Based on GAPartNet, we investigate three cross-category tasks: part segmentation, part pose estimation, and part-based object manipulation. Given the significant domain gaps between seen and unseen object categories, we propose a robust 3D segmentation method from the perspective of domain generalization by integrating adversarial learning techniques. Our method outperforms all existing methods by a large margin, no matter on seen or unseen categories. Furthermore, with part segmentation and pose estimation results, we leverage the GAPart pose definition to design part-based manipulation heuristics that can generalize well to unseen object categories in both the simulator and the real world. Our dataset, code, and demos are available on our project page.

12. FlowBot3D: Learning 3D Articulation Flow to Manipulate Articulated Objects

FlowBot3D, RSS 2022

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: PartNet-Mobility
  • Input: Single Point Cloud
Abstract

We explore a novel method to perceive and manipulate 3D articulated objects that generalizes to enable a robot to articulate unseen classes of objects. We propose a vision-based system that learns to predict the potential motions of the parts of a variety of articulated objects to guide downstream motion planning of the system to articulate the objects. To predict the object motions, we train a neural network to output a dense vector field representing the point-wise motion direction of the points in the point cloud under articulation. We then deploy an analytical motion planner based on this vector field to achieve a policy that yields maximum articulation. We train the vision system entirely in simulation, and we demonstrate the capability of our system to generalize to unseen object instances and novel categories in both simulation and the real world, deploying our policy on a Sawyer robot with no finetuning. Results show that our system achieves state-of-the-art performance in both simulated and real-world experiments.

13. Neural Field Representations of Articulated Objects for Robotic Manipulation Planning

Grote et al., CVPRW 2023

πŸ“„ Paper | 🌐 Project Page

  • Level: Category-Level
  • Input: Multiple RGB Images
Abstract

Traditional approaches for manipulation planning rely on an explicit geometric model of the environment to formulate a given task as an optimization problem. However, inferring an accurate model from raw sensor input is a hard problem in itself, in particular for articulated objects (e.g., closets, drawers). In this paper, we propose a Neural Field Representation (NFR) of articulated objects that enables manipulation planning directly from images. Specifically, after taking a few pictures of a new articulated object, we can forward simulate its possible movements, and, therefore, use this neural model directly for planning with trajectory optimization. Additionally, this representation can be used for shape reconstruction, semantic segmentation and image rendering, which provides a strong supervision signal during training and generalization. We show that our model, which was trained only on synthetic images, is able to extract a meaningful representation for unseen objects of the same class, both in simulation and with real images. Furthermore, we demonstrate that the representation enables robotic manipulation of an articulated object in the real world directly from images.

14. Act the Part: Learning Interaction Strategies for Articulated Object Part Discovery

AtP, ICCV 2021

πŸ“„ Paper

  • Level: Category-Level
  • Dataset: Partnet-Mobility
  • Input: RGB Sequence
Abstract

People often use physical intuition when manipulating articulated objects, irrespective of object semantics. Motivated by this observation, we identify an important embodied task where an agent must play with objects to recover their parts. To this end, we introduce Act the Part (AtP) to learn how to interact with articulated objects to discover and segment their pieces. By coupling action selection and motion segmentation, AtP is able to isolate structures to make perceptual part recovery possible without semantic labels. Our experiments show AtP learns efficient strategies for part discovery, can generalize to unseen categories, and is capable of conditional reasoning for the task. Although trained in simulation, we show convincing transfer to real world data with no fine-tuning.

Motion Transfer

1. CA2T-Net: Category-Agnostic 3D Articulation Transfer from Single Image

CA2T-Net, arXiv 2023

πŸ“„ Paper

  • Level: Category-Agnostic
  • Dataset: PartNet-Mobility
  • Input: RGB, Mesh
Abstract

We present a neural network approach to transfer the motion from a single image of an articulated object to a rest-state (i.e., unarticulated) 3D model. Our network learns to predict the object's pose, part segmentation, and corresponding motion parameters to reproduce the articulation shown in the input image. The network is composed of three distinct branches that take a shared joint image-shape embedding and is trained end-to-end. Unlike previous methods, our approach is independent of the topology of the object and can work with objects from arbitrary categories. Our method, trained with only synthetic data, can be used to automatically animate a mesh, infer motion from real images, and transfer articulation to functionally similar but geometrically distinct 3D models at test time.

2. Command-driven Articulated Object Understanding and Manipulation

Cart, CVPR 2023

πŸ“„ Paper

  • Level: Category-Agnostic
  • Dataset: Shape2Motion, PartNet-Mobility
  • Input: Single Point Cloud
Abstract

We present Cart, a new approach towards articulated-object manipulations by human commands. Beyond the existing work that focuses on inferring articulation structures, we further support manipulating articulated shapes to align them subject to simple command templates. The key of Cart is to utilize the prediction of object structures to connect visual observations with user commands for effective manipulations. It is achieved by encoding command messages for motion prediction and a test-time adaptation to adjust the amount of movement from only command supervision. For a rich variety of object categories, Cart can accurately manipulate object shapes and outperform the state-of-the-art approaches in understanding the inherent articulation structures. Also, it can well generalize to unseen object categories and real-world objects. We hope Cart could open new directions for instructing machines to operate articulated objects.

3. Learning to Predict Part Mobility from a Single Static Snapshot

Hu et al., TOG 2017

πŸ“„ Paper

  • Level: Category-Agnostic
  • Input: Snapshots
Abstract

We introduce a method for learning a model for the mobility of parts in 3D objects. Our method allows not only to understand the dynamic functionalities of one or more parts in a 3D object, but also to apply the mobility functions to static 3D models. Specifically, the learned part mobility model can predict mobilities for parts of a 3D object given in the form of a single static snapshot reflecting the spatial configuration of the object parts in 3D space, and transfer the mobility from relevant units in the training data. The training data consists of a set of mobility units of different motion types. Each unit is composed of a pair of 3D object parts (one moving and one reference part), along with usage examples consisting of a few snapshots capturing different motion states of the unit. Taking advantage of a linearity characteristic exhibited by most part motions in everyday objects, and utilizing a set of part-relation descriptors, we define a mapping from static snapshots to dynamic units. This mapping employs a motion-dependent snapshot-to-unit distance obtained via metric learning. We show that our learning scheme leads to accurate motion prediction from single static snapshots and allows proper motion transfer. We also demonstrate other applications such as motion-driven object detection and motion hierarchy construction.

Reconstruction

1. CenterArt: Joint Shape Reconstruction and 6-DoF Grasp Estimation of Articulated Objects

CenterArt, arXiv 2024

πŸ“„ Paper

  • Dataset: PartNet-Mobility
  • Input: Single RGB-D
Abstract

Precisely grasping and reconstructing articulated objects is key to enabling general robotic manipulation. In this paper, we propose CenterArt, a novel approach for simultaneous 3D shape reconstruction and 6-DoF grasp estimation of articulated objects. CenterArt takes RGB-D images of the scene as input and first predicts the shape and joint codes through an encoder. The decoder then leverages these codes to reconstruct 3D shapes and estimate 6-DoF grasp poses of the objects. We further develop a mechanism for generating a dataset of 6-DoF grasp ground truth poses for articulated objects. CenterArt is trained on realistic scenes containing multiple articulated objects with randomized designs, textures, lighting conditions, and realistic depths. We perform extensive experiments demonstrating that CenterArt outperforms existing methods in accuracy and robustness.

2. Detection Based Part-level Articulated Object Reconstruction from Single RGBD Image

Kawana et al., NIPS 2023

πŸ“„ Paper

  • Level: Category-Agnostic
  • Dataset: PartNet-Mobility
  • Input: Single RGB-D
Abstract

We propose an end-to-end trainable, cross-category method for reconstructing multiple man-made articulated objects from a single RGBD image, focusing on part-level shape reconstruction and pose and kinematics estimation. We depart from previous works that rely on learning instance-level latent space, focusing on man-made articulated objects with predefined part counts. Instead, we propose a novel alternative approach that employs part-level representation, representing instances as combinations of detected parts. While our detect-then-group approach effectively handles instances with diverse part structures and various part counts, it faces issues of false positives, varying part sizes and scales, and an increasing model size due to end-to-end training. To address these challenges, we propose 1) test-time kinematics-aware part fusion to improve detection performance while suppressing false positives, 2) anisotropic scale normalization for part shape learning to accommodate various part sizes and scales, and 3) a balancing strategy for cross-refinement between feature space and output space to improve part detection while maintaining model size. Evaluation on both synthetic and real data demonstrates that our method successfully reconstructs variously structured multiple instances that previous works cannot handle, and outperforms prior works in shape reconstruction and kinematics estimation.

3. Interaction-Driven Active 3D Reconstruction with Object Interiors

YAN et al., ToG 2023

πŸ“„ Paper | πŸ’» Code

  • Level: Category-Level
  • Dataset: PartNet-Mobility
  • Input: Point Cloud
Abstract

We introduce an active 3D reconstruction method which integrates visual perception, robot-object interaction, and 3D scanning to recover both the exterior and interior, i.e., unexposed, geometries of a target 3D object. Unlike other works in active vision which focus on optimizing camera viewpoints to better investigate the environment, the primary feature of our reconstruction is an analysis of the interactability of various parts of the target object and the ensuing part manipulation by a robot to enable scanning of occluded regions. As a result, an understanding of part articulations of the target object is obtained on top of complete geometry acquisition. Our method operates fully automatically by a Fetch robot with built-in RGBD sensors. It iterates between interaction analysis and interaction-driven reconstruction, scanning and reconstructing detected moveable parts one at a time, where both the articulated part detection and mesh reconstruction are carried out by neural networks. In the final step, all the remaining, non-articulated parts, including all the interior structures that had been exposed by prior part manipulations and subsequently scanned, are reconstructed to complete the acquisition. We demonstrate the performance of our method via qualitative and quantitative evaluation, ablation studies, comparisons to alternatives, as well as experiments in a real environment.

4. Structure from Action: Learning Interactions for 3D Articulated Object Structure Discovery

SfA, IROS 2023

πŸ“„ Paper | 🌐 Project Page

  • Level: Category-Agnostic
  • Dataset: PartNet-Mobility
  • Input: RGB Point Cloud
Abstract

We introduce Structure from Action (SfA), a framework to discover 3D part geometry and joint parameters of unseen articulated objects via a sequence of inferred interactions. Our key insight is that 3D interaction and perception should be considered in conjunction to construct 3D articulated CAD models, especially for categories not seen during training. By selecting informative interactions, SfA discovers parts and reveals occluded surfaces, like the inside of a closed drawer. By aggregating visual observations in 3D, SfA accurately segments multiple parts, reconstructs part geometry, and infers all joint parameters in a canonical coordinate frame. Our experiments demonstrate that a SfA model trained in simulation can generalize to many unseen object categories with diverse structures and to real-world objects. Empirically, SfA outperforms a pipeline of state-of-the-art components by 25.4 3D IoU percentage points on unseen categories, while matching already performant joint estimation baselines.

Scene-level Reconstruction

1. Ditto in the house: Building articulation models of indoor scenes through interactive perception

Ditto in the house, ICRA 2023

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: CubiCasa5K
  • Input: Two Point Clouds
Abstract

Our approach, named Ditto in the House, discovers possible articulated objects through affordance prediction, interacts with these objects to produce articulated motions, and infers the articulation properties from the visual observations before and after each interaction. The approach consists of two stages β€” affordance prediction and articulation inference. During affordance prediction, we pass the static scene point cloud into the affordance network and predict the scene-level affordance map. Then, the robot interacts with the object based on those contact points. During articulation inference, we feed the point cloud observations before and after each interaction into the articulation model network to obtain articulation estimation. By aggregating the estimated articulation models, we build the articulation models of the entire scene.

Tracking

1. Category-Independent Articulated Object Tracking with Factor Graphs

Heppert et al., IROS 2022

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Agnostic
  • Dataset: PartNet-Mobility
  • Input: RGB-D Sequence
Abstract

Robots deployed in human-centric environments may need to manipulate a diverse range of articulated objects, such as doors, dishwashers, and cabinets. Articulated objects often come with unexpected articulation mechanisms that are inconsistent with categorical priors: for example, a drawer might rotate about a hinge joint instead of sliding open. We propose a category-independent framework for predicting the articulation models of unknown objects from sequences of RGB-D images. The prediction is performed by a two-step process: first, a visual perception module tracks object part poses from raw images, and second, a factor graph takes these poses and infers the articulation model including the current configuration between the parts as a 6D twist. We also propose a manipulation-oriented metric to evaluate predicted joint twists in terms of how well a compliant robot controller would be able to manipulate the articulated object given the predicted twist. We demonstrate that our visual perception and factor graph modules outperform baselines on simulated data and show the applicability of our factor graph on real world data.

2. CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA, ICCV 2021

πŸ“„ Paper | 🌐 Project Page | πŸ’» Code

  • Level: Category-Level
  • Dataset: NOCS-REAL275, PartNet-Mobility, BMVC
  • Input: Depth Sequence
Abstract

In this work, we tackle the problem of category-level online pose tracking of objects from point cloud sequences. For the first time, we propose a unified framework that can handle 9DoF pose tracking for novel rigid object instances as well as per-part pose tracking for articulated objects from known categories. Here the 9DoF pose, comprising 6D pose and 3D size, is equivalent to a 3D amodal bounding box representation with free 6D pose. Given the depth point cloud at the current frame and the estimated pose from the last frame, our novel end-to-end pipeline learns to accurately update the pose. Our pipeline is composed of three modules: 1) a pose canonicalization module that normalizes the pose of the input depth point cloud; 2) RotationNet, a module that directly regresses small interframe delta rotations; and 3) CoordinateNet, a module that predicts the normalized coordinates and segmentation, enabling analytical computation of the 3D size and translation. Leveraging the small pose regime in the pose-canonicalized point clouds, our method integrates the best of both worlds by combining dense coordinate prediction and direct rotation regression, thus yielding an end-to-end differentiable pipeline optimized for 9DoF pose accuracy (without using non-differentiable RANSAC). Our extensive experiments demonstrate that our method achieves new state-of-the-art performance on category-level rigid object pose (NOCS-REAL275) and articulated object pose benchmarks (SAPIEN, BMVC) at the fastest FPS ~12.

Credits

About

A curated list of resources for articulated objects understanding.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages