Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add doc for CreateSweepableEstimator, Parameter and SearchSpace #6611

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.ML.SearchSpace;

namespace Microsoft.ML.AutoML.Samples
{
public static class ParameterExample
{
public static void Run()
{
// Parameter is essentially a wrapper class over Json.
// Therefore it supports all json types, like integar, number, boolearn, string, etc..

// To create parameter over existing value, use Parameter.From
var intParam = Parameter.FromInt(10);
var doubleParam = Parameter.FromDouble(20);
var boolParam = Parameter.FromBool(false);

// To cast parameter to specific type, use Parameter.AsType
// NOTE: Casting to a wrong type will trigger an argumentException.
var i = intParam.AsType<int>(); // i == 10
var d = doubleParam.AsType<double>(); // d == 20
var b = boolParam.AsType<bool>(); // b == false
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Diagnostics;
using System.Text;
using System.Text.Json;
using Microsoft.ML.SearchSpace;
using Microsoft.ML.SearchSpace.Option;

namespace Microsoft.ML.AutoML.Samples
{
public static class SearchSpaceExample
{
public static void Run()
{
// The following code shows how to create a SearchSpace for MyParameter.
var myParameterSearchSpace = new SearchSpace<MyParameter>();

// Equivalently, you can also create myParameterSearchSpace from scratch.
var myParameterSearchSpace2 = new SearchSpace.SearchSpace();

// numeric options
myParameterSearchSpace2["IntOption"] = new UniformIntOption(min: -10, max: 10, logBase: false, defaultValue: 0);
myParameterSearchSpace2["SingleOption"] = new UniformSingleOption(min: 1, max: 10, logBase: true, defaultValue: 1);
myParameterSearchSpace2["DoubleOption"] = new UniformDoubleOption(min: -10, max: 10, logBase: false, defaultValue: 0);

// choice options
myParameterSearchSpace2["BoolOption"] = new ChoiceOption(true, false);
myParameterSearchSpace2["StrOption"] = new ChoiceOption("a", "b", "c");

// nest options
var nestedSearchSpace = new SearchSpace.SearchSpace();
nestedSearchSpace["IntOption"] = new UniformIntOption(min: -10, max: 10, logBase: false, defaultValue: 0);
myParameterSearchSpace2["Nest"] = nestedSearchSpace;

// the two search space should be equal
Debug.Assert(myParameterSearchSpace.GetHashCode() == myParameterSearchSpace2.GetHashCode());
}

public class MyParameter
{
[Range((int)-10, 10, 0, false)]
public int IntOption { get; set; }

[Range(1f, 10f, 1f, true)]
public float SingleOption { get; set; }

[Range(-10, 10, false)]
public double DoubleOption { get; set; }

[BooleanChoice]
public bool BoolOption { get; set; }

[Choice("a", "b", "c")]
public string StrOption { get; set; }

[NestOption]
public NestParameter Nest { get; set; }
}

public class NestParameter
{
[Range((int)-10, 10, 0, false)]
public int IntOption { get; set; }
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,171 @@
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Microsoft.ML.Data;
using Microsoft.ML.SearchSpace;

namespace Microsoft.ML.AutoML.Samples
{
public static class SweepableLightGBMBinaryExperiment
{
class LightGBMOption
{
[Range(4, 32768, init: 4, logBase: false)]
public int NumberOfLeaves { get; set; } = 4;

[Range(4, 32768, init: 4, logBase: false)]
public int NumberOfTrees { get; set; } = 4;
}

public static async Task RunAsync()
{
// This example shows how to use Sweepable API to run hyper-parameter optimization over
// LightGBM trainer with a customized search space.

// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var seed = 0;
var context = new MLContext(seed);

// Create a list of training data points and convert it to IDataView.
var data = GenerateRandomBinaryClassificationDataPoints(100, seed);
var dataView = context.Data.LoadFromEnumerable(data);

// Split the dataset into train and test sets with 10% of the data used for testing.
var trainTestSplit = context.Data.TrainTestSplit(dataView, testFraction: 0.1);

// Define a customized search space for LightGBM
var lgbmSearchSpace = new SearchSpace<LightGBMOption>();

// Define the sweepable LightGBM estimator.
var lgbm = context.Auto().CreateSweepableEstimator((_context, option) =>
{
return _context.BinaryClassification.Trainers.LightGbm(
"Label",
"Features",
numberOfLeaves: option.NumberOfLeaves,
numberOfIterations: option.NumberOfTrees);
}, lgbmSearchSpace);

// Create sweepable pipeline
var pipeline = new EstimatorChain<ITransformer>().Append(lgbm);

// Create an AutoML experiment
var experiment = context.Auto().CreateExperiment();

// Redirect AutoML log to console
context.Log += (object o, LoggingEventArgs e) =>
{
if (e.Source == nameof(AutoMLExperiment) && e.Kind > Runtime.ChannelMessageKind.Trace)
{
Console.WriteLine(e.RawMessage);
}
};

// Config experiment to optimize "Accuracy" metric on given dataset.
// This experiment will run hyper-parameter optimization on given pipeline
experiment.SetPipeline(pipeline)
.SetDataset(trainTestSplit.TrainSet, fold: 5) // use 5-fold cross validation to evaluate each trial
.SetBinaryClassificationMetric(BinaryClassificationMetric.Accuracy, "Label")
.SetMaxModelToExplore(100); // explore 100 trials

// start automl experiment
var result = await experiment.RunAsync();

// Expected output samples during training. The pipeline will be unknown because it's created using
// customized sweepable estimator, therefore AutoML doesn't have the knowledge of the exact type of the estimator.
// Update Running Trial - Id: 0
// Update Completed Trial - Id: 0 - Metric: 0.5105967259285338 - Pipeline: Unknown=>Unknown - Duration: 616 - Peak CPU: 0.00% - Peak Memory in MB: 35.54
// Update Best Trial - Id: 0 - Metric: 0.5105967259285338 - Pipeline: Unknown=>Unknown

// evaluate test dataset on best model.
var bestModel = result.Model;
var eval = bestModel.Transform(trainTestSplit.TestSet);
var metrics = context.BinaryClassification.Evaluate(eval);

PrintMetrics(metrics);

// Expected output:
// Accuracy: 0.67
// AUC: 0.75
// F1 Score: 0.33
// Negative Precision: 0.88
// Negative Recall: 0.70
// Positive Precision: 0.25
// Positive Recall: 0.50

// TEST POSITIVE RATIO: 0.1667(2.0 / (2.0 + 10.0))
// Confusion table
// ||======================
// PREDICTED || positive | negative | Recall
// TRUTH ||======================
// positive || 1 | 1 | 0.5000
// negative || 3 | 7 | 0.7000
// ||======================
// Precision || 0.2500 | 0.8750 |
}

private static IEnumerable<BinaryClassificationDataPoint> GenerateRandomBinaryClassificationDataPoints(int count,
int seed = 0)

{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
var label = randomFloat() > 0.5f;
yield return new BinaryClassificationDataPoint
{
Label = label,
// Create random features that are correlated with the label.
// For data points with false label, the feature values are
// slightly increased by adding a constant.
Features = Enumerable.Repeat(label, 50)
.Select(x => x ? randomFloat() : randomFloat() +
0.1f).ToArray()

};
}
}

// Example with label and 50 feature values. A data set is a collection of
// such examples.
private class BinaryClassificationDataPoint
{
public bool Label { get; set; }

[VectorType(50)]
public float[] Features { get; set; }
}

// Class used to capture predictions.
private class Prediction
{
// Original label.
public bool Label { get; set; }
// Predicted label from the trainer.
public bool PredictedLabel { get; set; }
}

// Pretty-print BinaryClassificationMetrics objects.
private static void PrintMetrics(BinaryClassificationMetrics metrics)
{
Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
Console.WriteLine($"Negative Precision: " +
$"{metrics.NegativePrecision:F2}");

Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
Console.WriteLine($"Positive Precision: " +
$"{metrics.PositivePrecision:F2}");

Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}
7 changes: 7 additions & 0 deletions src/Microsoft.ML.AutoML/API/AutoCatalog.cs
Original file line number Diff line number Diff line change
Expand Up @@ -291,6 +291,13 @@ public ColumnInferenceResults InferColumns(string path, uint labelColumnIndex, b
/// <summary>
/// Create a sweepable estimator with a custom factory and search space.
/// </summary>
/// <example>
/// <format type="text/markdown">
/// <![CDATA[
/// [!code-csharp[AutoMLExperiment](~/../docs/samples/docs/samples/Microsoft.ML.AutoML.Samples/Sweepable/SweepableLightGBMBinaryExperiment.cs)]
/// ]]>
/// </format>
/// </example>
public SweepableEstimator CreateSweepableEstimator<T>(Func<MLContext, T, IEstimator<ITransformer>> factory, SearchSpace<T> ss = null)
where T : class, new()
{
Expand Down
7 changes: 7 additions & 0 deletions src/Microsoft.ML.SearchSpace/Parameter.cs
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,13 @@ public enum ParameterType
/// <summary>
/// <see cref="Parameter"/> is used to save sweeping result from tuner and is used to restore mlnet pipeline from sweepable pipeline.
/// </summary>
/// <example>
/// <format type="text/markdown">
/// <![CDATA[
/// [!code-csharp[AutoMLExperiment](~/../docs/samples/docs/samples/Microsoft.ML.AutoML.Samples/Sweepable/ParameterExample.cs)]
/// ]]>
/// </format>
/// </example>
[JsonConverter(typeof(ParameterConverter))]
public sealed class Parameter : IDictionary<string, Parameter>, IEquatable<Parameter>, IEqualityComparer<Parameter>
{
Expand Down
14 changes: 14 additions & 0 deletions src/Microsoft.ML.SearchSpace/SearchSpace.cs
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,13 @@ namespace Microsoft.ML.SearchSpace
/// <summary>
/// This class is used to represent a set of <see cref="OptionBase"/>, which can be either one of <see cref="ChoiceOption"/>, <see cref="UniformNumericOption"/> or another nested search space.
/// </summary>
/// <example>
/// <format type="text/markdown">
/// <![CDATA[
/// [!code-csharp[AutoMLExperiment](~/../docs/samples/docs/samples/Microsoft.ML.AutoML.Samples/Sweepable/SearchSpaceExample.cs)]
/// ]]>
/// </format>
/// </example>
[JsonConverter(typeof(SearchSpaceConverter))]
public class SearchSpace : OptionBase, IDictionary<string, OptionBase>
{
Expand Down Expand Up @@ -373,6 +380,13 @@ private Parameter Update(Parameter left, Parameter right)
}

/// <inheritdoc/>
/// <example>
/// <format type="text/markdown">
/// <![CDATA[
/// [!code-csharp[AutoMLExperiment](~/../docs/samples/docs/samples/Microsoft.ML.AutoML.Samples/Sweepable/SearchSpaceExample.cs)]
/// ]]>
/// </format>
/// </example>
public sealed class SearchSpace<T> : SearchSpace
where T : class, new()
{
Expand Down