Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add AutoMLExperiment example doc #6594

Merged
merged 3 commits into from
Mar 28, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
144 changes: 144 additions & 0 deletions docs/samples/Microsoft.ML.AutoML.Samples/AutoMLExperiment.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,144 @@
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Microsoft.ML.Data;

namespace Microsoft.ML.AutoML.Samples
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@luisquintanilla Can you review this example

{
public static class AutoMLExperiment
{
public static async Task RunAsync()
{
var seed = 0;

// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var context = new MLContext(seed);

// Create a list of training data points and convert it to IDataView.
var data = GenerateRandomBinaryClassificationDataPoints(100, seed);
var dataView = context.Data.LoadFromEnumerable(data);

var trainTestSplit = context.Data.TrainTestSplit(dataView);

// Define the sweepable pipeline using predefined binary trainers and search space.
var pipeline = context.Auto().BinaryClassification(labelColumnName: "Label", featureColumnName: "Features");

// Create an AutoML experiment
var experiment = context.Auto().CreateExperiment();

// Redirect AutoML log to console
context.Log += (object o, LoggingEventArgs e) =>
{
if (e.Source == nameof(AutoMLExperiment) && e.Kind > Runtime.ChannelMessageKind.Trace)
{
Console.WriteLine(e.RawMessage);
}
};

// Config experiment to optimize "Accuracy" metric on given dataset.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I would also add in the comment a small note that you're using CV.

// This experiment will run hyper-parameter optimization on given pipeline
experiment.SetPipeline(pipeline)
.SetDataset(trainTestSplit.TrainSet, fold: 5) // use 5-fold cross validation to evaluate each trial
.SetBinaryClassificationMetric(BinaryClassificationMetric.Accuracy, "Label")
.SetMaxModelToExplore(100); // explore 100 trials

// start automl experiment
var result = await experiment.RunAsync();
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Add a comment saying this runs the experiments.


// Expected output samples during training:
// Update Running Trial - Id: 0
// Update Completed Trial - Id: 0 - Metric: 0.5536912515402218 - Pipeline: FastTreeBinary - Duration: 595 - Peak CPU: 0.00 % -Peak Memory in MB: 35.81
// Update Best Trial - Id: 0 - Metric: 0.5536912515402218 - Pipeline: FastTreeBinary

// evaluate test dataset on best model.
var bestModel = result.Model;
var eval = bestModel.Transform(trainTestSplit.TestSet);
var metrics = context.BinaryClassification.Evaluate(eval);

PrintMetrics(metrics);

// Expected output:
// Accuracy: 0.67
// AUC: 0.75
// F1 Score: 0.33
// Negative Precision: 0.88
// Negative Recall: 0.70
// Positive Precision: 0.25
// Positive Recall: 0.50

// TEST POSITIVE RATIO: 0.1667(2.0 / (2.0 + 10.0))
// Confusion table
// ||======================
// PREDICTED || positive | negative | Recall
// TRUTH ||======================
// positive || 1 | 1 | 0.5000
// negative || 3 | 7 | 0.7000
// ||======================
// Precision || 0.2500 | 0.8750 |
}

private static IEnumerable<BinaryClassificationDataPoint> GenerateRandomBinaryClassificationDataPoints(int count,
int seed = 0)

{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
var label = randomFloat() > 0.5f;
yield return new BinaryClassificationDataPoint
{
Label = label,
// Create random features that are correlated with the label.
// For data points with false label, the feature values are
// slightly increased by adding a constant.
Features = Enumerable.Repeat(label, 50)
.Select(x => x ? randomFloat() : randomFloat() +
0.1f).ToArray()

};
}
}

// Example with label and 50 feature values. A data set is a collection of
// such examples.
private class BinaryClassificationDataPoint
{
public bool Label { get; set; }

[VectorType(50)]
public float[] Features { get; set; }
}

// Class used to capture predictions.
private class Prediction
{
// Original label.
public bool Label { get; set; }
// Predicted label from the trainer.
public bool PredictedLabel { get; set; }
}

// Pretty-print BinaryClassificationMetrics objects.
private static void PrintMetrics(BinaryClassificationMetrics metrics)
{
Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
Console.WriteLine($"Negative Precision: " +
$"{metrics.NegativePrecision:F2}");

Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
Console.WriteLine($"Positive Precision: " +
$"{metrics.PositivePrecision:F2}");

Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}
2 changes: 2 additions & 0 deletions docs/samples/Microsoft.ML.AutoML.Samples/Program.cs
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,8 @@ public static void Main(string[] args)
{
try
{
AutoMLExperiment.RunAsync().Wait();

RecommendationExperiment.Run();
Console.Clear();

Expand Down
10 changes: 10 additions & 0 deletions src/Microsoft.ML.AutoML/AutoMLExperiment/AutoMLExperiment.cs
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,16 @@

namespace Microsoft.ML.AutoML
{
/// <summary>
/// The class for AutoML experiment
/// </summary>
/// <example>
/// <format type="text/markdown">
/// <![CDATA[
/// [!code-csharp[AutoMLExperiment](~/../docs/samples/docs/samples/Microsoft.ML.AutoML.Samples/AutoMLExperiment.cs)]
/// ]]>
/// </format>
/// </example>
public class AutoMLExperiment
{
internal const string PipelineSearchspaceName = "_pipeline_";
Expand Down