Skip to content

Added onnx export support for KeyToValueMappingTransformer #4455

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Nov 14, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
62 changes: 61 additions & 1 deletion src/Microsoft.ML.Data/Transforms/KeyToValue.cs
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
using Microsoft.ML.CommandLine;
using Microsoft.ML.Data;
using Microsoft.ML.Internal.Utilities;
using Microsoft.ML.Model.OnnxConverter;
using Microsoft.ML.Model.Pfa;
using Microsoft.ML.Runtime;
using Microsoft.ML.Transforms;
Expand Down Expand Up @@ -152,7 +153,7 @@ private protected override void SaveModel(ModelSaveContext ctx)

private protected override IRowMapper MakeRowMapper(DataViewSchema inputSchema) => new Mapper(this, inputSchema);

private sealed class Mapper : OneToOneMapperBase, ISaveAsPfa
private sealed class Mapper : OneToOneMapperBase, ISaveAsPfa, ISaveAsOnnx
{
private readonly KeyToValueMappingTransformer _parent;
private readonly DataViewType[] _types;
Expand Down Expand Up @@ -298,6 +299,8 @@ protected KeyToValueMap(Mapper mapper, PrimitiveDataViewType typeVal, int iinfo)
public abstract Delegate GetMappingGetter(DataViewRow input);

public abstract JToken SavePfa(BoundPfaContext ctx, JToken srcToken);

public abstract bool SaveOnnx(OnnxContext ctx, string srcVariableName, string dstVariableName);
}

private class KeyToValueMap<TKey, TValue> : KeyToValueMap
Expand Down Expand Up @@ -494,8 +497,65 @@ public override JToken SavePfa(BoundPfaContext ctx, JToken srcToken)
}
return PfaUtils.If(PfaUtils.Call("<", srcToken, 0), defaultToken, PfaUtils.Index(cellRef, srcToken));
}

public override bool SaveOnnx(OnnxContext ctx, string srcVariableName, string dstVariableName)
{
string opType;

// Onnx expects the input keys to be int64s. But the input data can come from an ML.NET node that
// may output a uint32. So cast it here to ensure that the data is treated correctly
opType = "Cast";
var castNodeOutput = ctx.AddIntermediateVariable(TypeOutput, "CastNodeOutput", true);
var castNode = ctx.CreateNode(opType, srcVariableName, castNodeOutput, ctx.GetNodeName(opType), "");
var t = InternalDataKindExtensions.ToInternalDataKind(DataKind.Int64).ToType();
castNode.AddAttribute("to", t);

opType = "LabelEncoder";
var node = ctx.CreateNode(opType, castNodeOutput, dstVariableName, ctx.GetNodeName(opType));
var keys = Array.ConvertAll<int, long>(Enumerable.Range(1, _values.Length).ToArray(), item => Convert.ToInt64(item));
node.AddAttribute("keys_int64s", keys);

if (TypeOutput == NumberDataViewType.Int64)
{
long[] values = Array.ConvertAll<TValue, long>(_values.GetValues().ToArray(), item => Convert.ToInt64(item));
node.AddAttribute("values_int64s", values);
}
else if (TypeOutput == NumberDataViewType.Single)
{
float[] values = Array.ConvertAll<TValue, float>(_values.GetValues().ToArray(), item => Convert.ToSingle(item));
node.AddAttribute("values_floats", values);
}
else if (TypeOutput == TextDataViewType.Instance)
{
string[] values = Array.ConvertAll<TValue, string>(_values.GetValues().ToArray(), item => Convert.ToString(item));
node.AddAttribute("values_strings", values);
}
else
return false;

return true;
}
}

public bool CanSaveOnnx(OnnxContext ctx) => true;

public void SaveAsOnnx(OnnxContext ctx)
{
for (int iinfo = 0; iinfo < _parent.ColumnPairs.Length; ++iinfo)
{
var info = _parent.ColumnPairs[iinfo];
var inputColumnName = info.inputColumnName;

if (!ctx.ContainsColumn(inputColumnName))
continue;

var dstVariableName = ctx.AddIntermediateVariable(_types[iinfo], info.outputColumnName, true);
if (!_kvMaps[iinfo].SaveOnnx(ctx, inputColumnName, dstVariableName))
{
ctx.RemoveColumn(inputColumnName, true);
}
}
}
}
}

Expand Down
64 changes: 64 additions & 0 deletions test/Microsoft.ML.Tests/OnnxConversionTest.cs
Original file line number Diff line number Diff line change
Expand Up @@ -1040,6 +1040,42 @@ public void OptionalColumnOnnxTest()
Done();
}

[Fact]
private void KeyToValueOnnxConversionTest()
{
var mlContext = new MLContext(seed: 1);

string dataPath = GetDataPath("breast-cancer.txt");
var dataView = mlContext.Data.LoadFromTextFile<BreastCancerMulticlassExample>(dataPath,
separatorChar: '\t',
hasHeader: true);

var pipeline = mlContext.Transforms.Conversion.MapValueToKey("LabelKey", "Label").
Append(mlContext.Transforms.Conversion.MapKeyToValue("LabelValue", "LabelKey"));

var model = pipeline.Fit(dataView);
var transformedData = model.Transform(dataView);
var onnxModel = mlContext.Model.ConvertToOnnxProtobuf(model, dataView);

var onnxFileName = "KeyToValue.onnx";
var onnxModelPath = GetOutputPath(onnxFileName);

SaveOnnxModel(onnxModel, onnxModelPath, null);

if (IsOnnxRuntimeSupported())
{
// Evaluate the saved ONNX model using the data used to train the ML.NET pipeline.
string[] inputNames = onnxModel.Graph.Input.Select(valueInfoProto => valueInfoProto.Name).ToArray();
string[] outputNames = onnxModel.Graph.Output.Select(valueInfoProto => valueInfoProto.Name).ToArray();
var onnxEstimator = mlContext.Transforms.ApplyOnnxModel(outputNames, inputNames, onnxModelPath);
var onnxTransformer = onnxEstimator.Fit(dataView);
var onnxResult = onnxTransformer.Transform(dataView);
CompareSelectedScalarColumns<ReadOnlyMemory<Char>>(transformedData.Schema[3].Name, outputNames[3], transformedData, onnxResult);
}

Done();
}

private void CreateDummyExamplesToMakeComplierHappy()
{
var dummyExample = new BreastCancerFeatureVector() { Features = null };
Expand Down Expand Up @@ -1105,6 +1141,34 @@ private void CompareSelectedVectorColumns<T>(string leftColumnName, string right
}
}

private void CompareSelectedScalarColumns<T>(string leftColumnName, string rightColumnName, IDataView left, IDataView right)
{
var leftColumn = left.Schema[leftColumnName];
var rightColumn = right.Schema[rightColumnName];

using (var expectedCursor = left.GetRowCursor(leftColumn))
using (var actualCursor = right.GetRowCursor(rightColumn))
{
T expected = default;
VBuffer<T> actual = default;
var expectedGetter = expectedCursor.GetGetter<T>(leftColumn);
var actualGetter = actualCursor.GetGetter<VBuffer<T>>(rightColumn);
while (expectedCursor.MoveNext() && actualCursor.MoveNext())
{
expectedGetter(ref expected);
actualGetter(ref actual);
var actualVal = actual.GetItemOrDefault(0);

Assert.Equal(1, actual.Length);

if (typeof(T) == typeof(ReadOnlyMemory<Char>))
Assert.Equal(expected.ToString(), actualVal.ToString());
else
Assert.Equal(expected, actualVal);
}
}
}

private void CompareSelectedR8VectorColumns(string leftColumnName, string rightColumnName, IDataView left, IDataView right, int precision = 6)
{
var leftColumn = left.Schema[leftColumnName];
Expand Down