Skip to content

Fix iris.txt dataset and modify Iris Classification tests accordingly #428

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jul 12, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -21,8 +21,8 @@ TRUTH ||========================
Precision ||1.0000 |0.9310 |0.8966 |
Accuracy(micro-avg): 0.936709
Accuracy(macro-avg): 0.942857
Log-loss: 0.312681
Log-loss reduction: 71.248182
Log-loss: 0.312759
Log-loss reduction: 71.240938

Confusion table
||========================
Expand All @@ -42,8 +42,8 @@ OVERALL RESULTS
---------------------------------------
Accuracy(micro-avg): 0.947228 (0.0105)
Accuracy(macro-avg): 0.947944 (0.0051)
Log-loss: 0.253035 (0.0596)
Log-loss reduction: 76.717466 (5.4693)
Log-loss: 0.253074 (0.0597)
Log-loss reduction: 76.713844 (5.4729)

---------------------------------------
Physical memory usage(MB): %Number%
Expand Down
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
LightGBMMC
Accuracy(micro-avg) Accuracy(macro-avg) Log-loss Log-loss reduction /iter /lr /nl /mil /nt Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.947228 0.947944 0.253035 76.71747 10 0.2 20 10 1 LightGBMMC %Data% %Output% 99 0 0 maml.exe CV tr=LightGBMMC{nt=1 iter=10 v=- lr=0.2 mil=10 nl=20} threads=- dout=%Output% loader=Text{col=Label:TX:0 col=Features:1-*} data=%Data% seed=1 xf=Term{col=Label} /iter:10;/lr:0.2;/nl:20;/mil:10;/nt:1
0.947228 0.947944 0.253074 76.71384 10 0.2 20 10 1 LightGBMMC %Data% %Output% 99 0 0 maml.exe CV tr=LightGBMMC{nt=1 iter=10 v=- lr=0.2 mil=10 nl=20} threads=- dout=%Output% loader=Text{col=Label:TX:0 col=Features:1-*} data=%Data% seed=1 xf=Term{col=Label} /iter:10;/lr:0.2;/nl:20;/mil:10;/nt:1

148 changes: 74 additions & 74 deletions test/BaselineOutput/SingleDebug/LightGBMMC/LightGBMMC-CV-iris.key.txt
Original file line number Diff line number Diff line change
@@ -1,83 +1,83 @@
Instance Label Assigned Log-loss #1 Score #2 Score #3 Score #1 Class #2 Class #3 Class
5 0 0 0.25328578422472414 0.776246 0.1675262 0.0562277846 0 1 2
6 0 0 0.12225769559664824 0.8849203 0.0591422766 0.05593741 0 2 1
8 0 0 0.13903052119099127 0.870201468 0.07016017 0.05963834 0 1 2
9 0 0 0.13970851121881944 0.8696117 0.07047898 0.0599093363 0 1 2
10 0 0 0.12269405525649343 0.88453424 0.0593406856 0.0561250672 0 2 1
11 0 0 0.12269405525649343 0.88453424 0.0593406856 0.0561250672 0 2 1
18 0 0 0.25328578422472414 0.776246 0.1675262 0.0562277846 0 1 2
20 0 0 0.25328578422472414 0.776246 0.1675262 0.0562277846 0 1 2
21 0 0 0.12269405525649343 0.88453424 0.0593406856 0.0561250672 0 2 1
25 0 0 0.13970851121881944 0.8696117 0.07047898 0.0599093363 0 1 2
28 0 0 0.12225769559664824 0.8849203 0.0591422766 0.05593741 0 2 1
31 0 0 0.12269405525649343 0.88453424 0.0593406856 0.0561250672 0 2 1
32 0 0 0.12269405525649343 0.88453424 0.0593406856 0.0561250672 0 2 1
35 0 0 0.13903052119099127 0.870201468 0.07016017 0.05963834 0 1 2
37 0 0 0.13970851121881944 0.8696117 0.07047898 0.0599093363 0 1 2
40 0 0 0.12225769559664824 0.8849203 0.0591422766 0.05593741 0 2 1
41 0 0 0.17550956509619134 0.8390294 0.09255582 0.0684148148 0 1 2
44 0 0 0.25328578422472414 0.776246 0.1675262 0.0562277846 0 1 2
45 0 0 0.13903052119099127 0.870201468 0.07016017 0.05963834 0 1 2
46 0 0 0.12269405525649343 0.88453424 0.0593406856 0.0561250672 0 2 1
48 0 0 0.12269405525649343 0.88453424 0.0593406856 0.0561250672 0 2 1
50 1 1 0.48031316690941278 0.61858964 0.2931589 0.08825144 1 2 0
51 1 1 0.18552267596609509 0.83067 0.09896274 0.07036729 1 0 2
52 1 2 1.8686139310181762 0.745523036 0.154337436 0.1001395 2 1 0
54 1 1 0.45819815025419125 0.632422149 0.3149078 0.0526700951 1 2 0
56 1 1 0.58631345356437459 0.5563746 0.357763946 0.0858614147 1 2 0
60 1 1 0.54904634529954011 0.5775003 0.363432646 0.0590670444 1 0 2
63 1 1 0.442888085987238 0.6421791 0.304338247 0.0534826852 1 2 0
64 1 1 0.14288655580917453 0.8668524 0.06818299 0.06496459 1 2 0
66 1 1 0.13927185898584951 0.8699915 0.06910439 0.060904108 1 2 0
68 1 1 0.1475586146516118 0.862811863 0.08110718 0.0560809337 1 2 0
69 1 1 0.13690026149264065 0.8720572 0.07104707 0.056895718 1 2 0
70 1 1 0.58631345356437459 0.5563746 0.357763946 0.0858614147 1 2 0
71 1 1 0.15194427686527462 0.859036148 0.07716796 0.06379592 1 2 0
72 1 2 1.4639003870351257 0.712372541 0.231332228 0.0562952235 2 1 0
73 1 1 0.45819815025419125 0.632422149 0.3149078 0.0526700951 1 2 0
74 1 1 0.13796619253742226 0.871128142 0.06828712 0.0605847277 1 2 0
76 1 1 0.45819815025419125 0.632422149 0.3149078 0.0526700951 1 2 0
77 1 2 2.0734221020246566 0.815010846 0.1257547 0.05923444 2 1 0
79 1 1 0.54904634529954011 0.5775003 0.363432646 0.0590670444 1 0 2
82 1 1 0.13641919697507263 0.8724768 0.07081407 0.0567091331 1 2 0
88 1 1 0.13407533925580511 0.8745242 0.06425438 0.0612214245 1 2 0
90 1 1 0.1425659799992052 0.867130339 0.0762954 0.0565742739 1 2 0
91 1 1 0.442888085987238 0.6421791 0.304338247 0.0534826852 1 2 0
92 1 1 0.13641919697507263 0.8724768 0.07081407 0.0567091331 1 2 0
93 1 1 0.54904634529954011 0.5775003 0.363432646 0.0590670444 1 0 2
95 1 1 0.13407533925580511 0.8745242 0.06425438 0.0612214245 1 2 0
96 1 1 0.13407533925580511 0.8745242 0.06425438 0.0612214245 1 2 0
97 1 1 0.13796619253742226 0.871128142 0.06828712 0.0605847277 1 2 0
98 1 1 0.54904634529954011 0.5775003 0.363432646 0.0590670444 1 0 2
99 1 1 0.13879074815854195 0.870410144 0.06865643 0.06093342 1 2 0
100 2 2 0.16223550400064654 0.850240946 0.0928473249 0.0569117554 2 0 1
102 2 2 0.12282263476045074 0.8844205 0.0591996 0.056379877 2 1 0
104 2 2 0.12282263476045074 0.8844205 0.0591996 0.056379877 2 1 0
105 2 2 0.12282263476045074 0.8844205 0.0591996 0.056379877 2 1 0
106 2 1 2.3434392875794119 0.8476237 0.09599691 0.05637939 1 2 0
108 2 2 0.22657594234978759 0.7972588 0.1479769 0.0547643229 2 1 0
109 2 2 0.16223550400064654 0.850240946 0.0928473249 0.0569117554 2 0 1
111 2 2 0.177848875720656 0.8370689 0.108788572 0.0541424938 2 1 0
5 0 0 0.25328601458204941 0.776245832 0.167526156 0.0562280267 0 1 2
6 0 0 0.12225796502047259 0.884920061 0.05914253 0.0559373945 0 2 1
8 0 0 0.13903079517192601 0.87020123 0.07016016 0.0596385933 0 1 2
9 0 0 0.13970878538557358 0.869611442 0.07047896 0.05990959 0 1 2
10 0 0 0.12269432479790915 0.884534 0.05934094 0.05612505 0 2 1
11 0 0 0.12269432479790915 0.884534 0.05934094 0.05612505 0 2 1
18 0 0 0.25328601458204941 0.776245832 0.167526156 0.0562280267 0 1 2
20 0 0 0.25328601458204941 0.776245832 0.167526156 0.0562280267 0 1 2
21 0 0 0.12269432479790915 0.884534 0.05934094 0.05612505 0 2 1
25 0 0 0.13970878538557358 0.869611442 0.07047896 0.05990959 0 1 2
28 0 0 0.12225796502047259 0.884920061 0.05914253 0.0559373945 0 2 1
31 0 0 0.12269432479790915 0.884534 0.05934094 0.05612505 0 2 1
32 0 0 0.12269432479790915 0.884534 0.05934094 0.05612505 0 2 1
35 0 0 0.13903079517192601 0.87020123 0.07016016 0.0596385933 0 1 2
37 0 0 0.13970878538557358 0.869611442 0.07047896 0.05990959 0 1 2
40 0 0 0.12225796502047259 0.884920061 0.05914253 0.0559373945 0 2 1
41 0 0 0.17550530270540357 0.839032948 0.09255621 0.068410866 0 1 2
44 0 0 0.25328601458204941 0.776245832 0.167526156 0.0562280267 0 1 2
45 0 0 0.13903079517192601 0.87020123 0.07016016 0.0596385933 0 1 2
46 0 0 0.12269432479790915 0.884534 0.05934094 0.05612505 0 2 1
48 0 0 0.12269432479790915 0.884534 0.05934094 0.05612505 0 2 1
50 1 1 0.48031528673730972 0.6185883 0.2931604 0.0882512555 1 2 0
51 1 1 0.1855230347406718 0.8306697 0.09896271 0.0703676 1 0 2
52 1 2 1.8686158620047173 0.7455236 0.154337138 0.100139305 2 1 0
54 1 1 0.45820041221338154 0.6324207 0.3149093 0.05266998 1 2 0
56 1 1 0.58631409634709242 0.556374252 0.357764423 0.08586135 1 2 0
60 1 1 0.5490426296940486 0.5775024 0.363434 0.0590636 1 0 2
63 1 1 0.44289031357940112 0.642177641 0.3043398 0.053482566 1 2 0
64 1 1 0.14288683084862894 0.866852164 0.06818328 0.06496458 1 2 0
66 1 1 0.13881478450725465 0.8703892 0.0686788 0.0609319545 1 2 0
68 1 1 0.14755364077036032 0.862816155 0.0811026245 0.0560812131 1 2 0
69 1 1 0.13689581878715465 0.8720611 0.07104298 0.0568959676 1 2 0
70 1 1 0.58631409634709242 0.556374252 0.357764423 0.08586135 1 2 0
71 1 1 0.15245577872775815 0.858596861 0.07763986 0.0637633 1 2 0
72 1 2 1.4638898231048283 0.7123695 0.231334671 0.05629582 2 1 0
73 1 1 0.45820041221338154 0.6324207 0.3149093 0.05266998 1 2 0
74 1 1 0.13842123633682313 0.870731831 0.068711035 0.06055716 1 2 0
76 1 1 0.45820041221338154 0.6324207 0.3149093 0.05266998 1 2 0
77 1 2 2.0734225760002563 0.815010965 0.12575464 0.0592344068 2 1 0
79 1 1 0.5490426296940486 0.5775024 0.363434 0.0590636 1 0 2
82 1 1 0.13641482472258923 0.872480631 0.07081 0.0567093827 1 2 0
88 1 1 0.13407561188247241 0.874523938 0.06425465 0.0612214059 1 2 0
90 1 1 0.14206322054986673 0.8675664 0.07583086 0.0566027239 1 2 0
91 1 1 0.44289031357940112 0.642177641 0.3043398 0.053482566 1 2 0
92 1 1 0.13641482472258923 0.872480631 0.07081 0.0567093827 1 2 0
93 1 1 0.5490426296940486 0.5775024 0.363434 0.0590636 1 0 2
95 1 1 0.13407561188247241 0.874523938 0.06425465 0.0612214059 1 2 0
96 1 1 0.13407561188247241 0.874523938 0.06425465 0.0612214059 1 2 0
97 1 1 0.13842123633682313 0.870731831 0.068711035 0.06055716 1 2 0
98 1 1 0.5490426296940486 0.5775024 0.363434 0.0590636 1 0 2
99 1 1 0.13879102207379132 0.8704099 0.06865671 0.0609334 1 2 0
100 2 2 0.16223550400064654 0.850240946 0.0928473249 0.05691175 2 0 1
102 2 2 0.12282263476045074 0.8844205 0.0591995977 0.0563798733 2 1 0
104 2 2 0.12282263476045074 0.8844205 0.0591995977 0.0563798733 2 1 0
105 2 2 0.12282263476045074 0.8844205 0.0591995977 0.0563798733 2 1 0
106 2 1 2.3492272871651649 0.84814316 0.09544288 0.05641394 1 2 0
108 2 2 0.22657586758781198 0.797258854 0.14797686 0.0547643043 2 1 0
109 2 2 0.16223550400064654 0.850240946 0.0928473249 0.05691175 2 0 1
111 2 2 0.177848875720656 0.8370689 0.108788565 0.0541424938 2 1 0
112 2 2 0.13281455464792449 0.875627458 0.06831084 0.0560617261 2 1 0
113 2 2 0.19621674447868781 0.8218341 0.12273933 0.05542656 2 1 0
113 2 2 0.1962166719523184 0.821834147 0.122739322 0.0554265566 2 1 0
115 2 2 0.17200937673419167 0.8419713 0.09234353 0.0656852052 2 0 1
117 2 2 0.16223550400064654 0.850240946 0.0928473249 0.0569117554 2 0 1
120 2 2 0.16223550400064654 0.850240946 0.0928473249 0.0569117554 2 0 1
121 2 2 0.16411842591849909 0.8486415 0.09412396 0.05723452 2 1 0
117 2 2 0.16223550400064654 0.850240946 0.0928473249 0.05691175 2 0 1
120 2 2 0.16223550400064654 0.850240946 0.0928473249 0.05691175 2 0 1
121 2 2 0.16411842591849909 0.8486415 0.09412395 0.0572345145 2 1 0
122 2 2 0.13716672321276682 0.871824861 0.07206305 0.0561121143 2 1 0
123 2 2 0.28256671512014453 0.753846347 0.189867079 0.05628657 2 1 0
125 2 2 0.20564890133993838 0.814118862 0.09413585 0.09174529 2 0 1
123 2 2 0.28256655698542577 0.753846467 0.18986699 0.0562865436 2 1 0
125 2 2 0.20564882812625254 0.8141189 0.09413582 0.09174526 2 0 1
128 2 2 0.13716672321276682 0.871824861 0.07206305 0.0561121143 2 1 0
129 2 2 0.16567795334648433 0.847319067 0.09548671 0.057194218 2 1 0
131 2 2 0.16223550400064654 0.850240946 0.0928473249 0.0569117554 2 0 1
129 2 2 0.16567788300150446 0.8473191 0.09548668 0.0571942 2 1 0
131 2 2 0.16223550400064654 0.850240946 0.0928473249 0.05691175 2 0 1
132 2 2 0.13716672321276682 0.871824861 0.07206305 0.0561121143 2 1 0
133 2 2 0.29113037794713281 0.7474182 0.191831991 0.0607497729 2 1 0
137 2 2 0.22116862531406531 0.8015815 0.104995139 0.09342336 2 1 0
138 2 1 0.99148905684440769 0.5769956 0.3710238 0.05198058 1 2 0
141 2 2 0.18520119392899573 0.8309371 0.09454043 0.07452248 2 0 1
144 2 2 0.16223550400064654 0.850240946 0.0928473249 0.0569117554 2 0 1
145 2 2 0.14505497806361808 0.864974737 0.07757514 0.0574501 2 1 0
147 2 2 0.14505497806361808 0.864974737 0.07757514 0.0574501 2 1 0
133 2 2 0.29112966022097542 0.747418761 0.191831574 0.06074964 2 1 0
137 2 2 0.22116855095526036 0.801581562 0.1049951 0.09342333 2 1 0
138 2 1 0.99148777165233459 0.5769952 0.371024281 0.05198054 1 2 0
141 2 2 0.18520119392899573 0.8309371 0.09454043 0.07452247 2 0 1
144 2 2 0.16223550400064654 0.850240946 0.0928473249 0.05691175 2 0 1
145 2 2 0.14505497806361808 0.864974737 0.07757514 0.0574500971 2 1 0
147 2 2 0.14505497806361808 0.864974737 0.07757514 0.0574500971 2 1 0
0 0 0 0.12805244799353907 0.879807234 0.0614267066 0.0587660335 0 1 2
1 0 0 0.13227381045206946 0.8761011 0.06422711 0.0596717857 0 1 2
2 0 0 0.12805244799353907 0.879807234 0.0614267066 0.0587660335 0 1 2
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -23,8 +23,8 @@ TRUTH ||========================================
Precision ||1.0000 |0.9310 |0.8966 |0.0000 |0.0000 |
Accuracy(micro-avg): 0.936709
Accuracy(macro-avg): 0.942857
Log-loss: 0.312681
Log-loss reduction: 71.248176
Log-loss: 0.312759
Log-loss reduction: 71.240931

Confusion table
||========================================
Expand All @@ -46,8 +46,8 @@ OVERALL RESULTS
---------------------------------------
Accuracy(micro-avg): 0.947228 (0.0105)
Accuracy(macro-avg): 0.947944 (0.0051)
Log-loss: 0.253035 (0.0596)
Log-loss reduction: 76.717461 (5.4693)
Log-loss: 0.253074 (0.0597)
Log-loss reduction: 76.713839 (5.4729)

---------------------------------------
Physical memory usage(MB): %Number%
Expand Down
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
LightGBMMC
Accuracy(micro-avg) Accuracy(macro-avg) Log-loss Log-loss reduction /iter /lr /nl /mil /nt Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.947228 0.947944 0.253035 76.71746 10 0.2 20 10 1 LightGBMMC %Data% %Output% 99 0 0 maml.exe CV tr=LightGBMMC{nt=1 iter=10 v=- lr=0.2 mil=10 nl=20} threads=- dout=%Output% loader=Text{col=Label:U4[0-4]:0 col=Features:1-4} data=%Data% seed=1 /iter:10;/lr:0.2;/nl:20;/mil:10;/nt:1
0.947228 0.947944 0.253074 76.71384 10 0.2 20 10 1 LightGBMMC %Data% %Output% 99 0 0 maml.exe CV tr=LightGBMMC{nt=1 iter=10 v=- lr=0.2 mil=10 nl=20} threads=- dout=%Output% loader=Text{col=Label:U4[0-4]:0 col=Features:1-4} data=%Data% seed=1 /iter:10;/lr:0.2;/nl:20;/mil:10;/nt:1

Loading