Skip to content

Create forecasting prediction engine and conform time series forecasting API to estimator standards. #3910

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 21 commits into from
Jul 1, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions docs/api-reference/io-time-series-ssa-forecast.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
### Input and Output Columns
There is only one input column.
The input column must be <xref:System.Single> where a <xref:System.Single> value indicates a value at a timestamp in the time series.

It produces either just one vector of forecasted values or three vectors: a vector of forecasted values, a vector of confidence lower bounds and a vector of confidence upper bounds.
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ public static void Example()
ITransformer model = ml.Transforms.DetectAnomalyBySrCnn(outputColumnName, inputColumnName, 16, 5, 5, 3, 8, 0.35).Fit(dataView);

// Create a time series prediction engine from the model.
var engine = model.CreateTimeSeriesPredictionFunction<TimeSeriesData, SrCnnAnomalyDetection>(ml);
var engine = model.CreateTimeSeriesEngine<TimeSeriesData, SrCnnAnomalyDetection>(ml);

Console.WriteLine($"{outputColumnName} column obtained post-transformation.");
Console.WriteLine("Data\tAlert\tScore\tMag");
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ public static void Example()
ITransformer model = ml.Transforms.DetectChangePointBySsa(outputColumnName, inputColumnName, confidence, changeHistoryLength, TrainingSize, SeasonalitySize + 1).Fit(dataView);

// Create a prediction engine from the model for feeding new data.
var engine = model.CreateTimeSeriesPredictionFunction<TimeSeriesData, ChangePointPrediction>(ml);
var engine = model.CreateTimeSeriesEngine<TimeSeriesData, ChangePointPrediction>(ml);

// Start streaming new data points with no change point to the prediction engine.
Console.WriteLine($"Output from ChangePoint predictions on new data:");
Expand Down Expand Up @@ -99,7 +99,7 @@ public static void Example()
model = ml.Model.Load(file, out DataViewSchema schema);

// We must create a new prediction engine from the persisted model.
engine = model.CreateTimeSeriesPredictionFunction<TimeSeriesData, ChangePointPrediction>(ml);
engine = model.CreateTimeSeriesEngine<TimeSeriesData, ChangePointPrediction>(ml);

// Run predictions on the loaded model.
for (int i = 0; i < 5; i++)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ public static void Example()
ITransformer model = ml.Transforms.DetectChangePointBySsa(outputColumnName, inputColumnName, confidence, changeHistoryLength, TrainingSize, SeasonalitySize + 1).Fit(dataView);

// Create a prediction engine from the model for feeding new data.
var engine = model.CreateTimeSeriesPredictionFunction<TimeSeriesData, ChangePointPrediction>(ml);
var engine = model.CreateTimeSeriesEngine<TimeSeriesData, ChangePointPrediction>(ml);

// Start streaming new data points with no change point to the prediction engine.
Console.WriteLine($"Output from ChangePoint predictions on new data:");
Expand Down Expand Up @@ -103,7 +103,7 @@ public static void Example()
model = ml.Model.Load(stream, out DataViewSchema schema);

// We must create a new prediction engine from the persisted model.
engine = model.CreateTimeSeriesPredictionFunction<TimeSeriesData, ChangePointPrediction>(ml);
engine = model.CreateTimeSeriesEngine<TimeSeriesData, ChangePointPrediction>(ml);

// Run predictions on the loaded model.
for (int i = 0; i < 5; i++)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ public static void Example()
ITransformer model = ml.Transforms.DetectIidChangePoint(outputColumnName, inputColumnName, 95, Size / 4).Fit(dataView);

// Create a time series prediction engine from the model.
var engine = model.CreateTimeSeriesPredictionFunction<TimeSeriesData, ChangePointPrediction>(ml);
var engine = model.CreateTimeSeriesEngine<TimeSeriesData, ChangePointPrediction>(ml);

Console.WriteLine($"{outputColumnName} column obtained post-transformation.");
Console.WriteLine("Data\tAlert\tScore\tP-Value\tMartingale value");
Expand Down Expand Up @@ -97,7 +97,7 @@ public static void Example()
model = ml.Model.Load(file, out DataViewSchema schema);

// Create a time series prediction engine from the checkpointed model.
engine = model.CreateTimeSeriesPredictionFunction<TimeSeriesData, ChangePointPrediction>(ml);
engine = model.CreateTimeSeriesEngine<TimeSeriesData, ChangePointPrediction>(ml);
for (int index = 0; index < 8; index++)
{
// Anomaly change point detection.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ public static void Example()
ITransformer model = ml.Transforms.DetectIidSpike(outputColumnName, inputColumnName, 95, Size).Fit(dataView);

// Create a time series prediction engine from the model.
var engine = model.CreateTimeSeriesPredictionFunction<TimeSeriesData, IidSpikePrediction>(ml);
var engine = model.CreateTimeSeriesEngine<TimeSeriesData, IidSpikePrediction>(ml);

Console.WriteLine($"{outputColumnName} column obtained post-transformation.");
Console.WriteLine("Data\tAlert\tScore\tP-Value");
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ public static void Example()
ITransformer model = ml.Transforms.DetectSpikeBySsa(outputColumnName, inputColumnName, 95, 8, TrainingSize, SeasonalitySize + 1).Fit(dataView);

// Create a prediction engine from the model for feeding new data.
var engine = model.CreateTimeSeriesPredictionFunction<TimeSeriesData, SsaSpikePrediction>(ml);
var engine = model.CreateTimeSeriesEngine<TimeSeriesData, SsaSpikePrediction>(ml);

// Start streaming new data points with no change point to the prediction engine.
Console.WriteLine($"Output from spike predictions on new data:");
Expand Down Expand Up @@ -94,7 +94,7 @@ public static void Example()
model = ml.Model.Load(file, out DataViewSchema schema);

// We must create a new prediction engine from the persisted model.
engine = model.CreateTimeSeriesPredictionFunction<TimeSeriesData, SsaSpikePrediction>(ml);
engine = model.CreateTimeSeriesEngine<TimeSeriesData, SsaSpikePrediction>(ml);

// Run predictions on the loaded model.
for (int i = 0; i < 5; i++)
Expand Down
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Transforms.TimeSeries;
using Microsoft.ML.TimeSeries;

namespace Samples.Dynamic
{
Expand All @@ -16,8 +16,7 @@ public static void Example()
// as well as the source of randomness.
var ml = new MLContext();

// Generate sample series data with a recurring pattern
const int SeasonalitySize = 5;
// Generate sample series data with a recurring pattern.
var data = new List<TimeSeriesData>()
{
new TimeSeriesData(0),
Expand All @@ -44,43 +43,58 @@ public static void Example()

// Setup arguments.
var inputColumnName = nameof(TimeSeriesData.Value);
var outputColumnName = nameof(ForecastResult.Forecast);

// Instantiate the forecasting model.
var model = ml.Forecasting.AdaptiveSingularSpectrumSequenceModeler(inputColumnName, data.Count, SeasonalitySize + 1, SeasonalitySize,
1, AdaptiveSingularSpectrumSequenceModeler.RankSelectionMethod.Exact, null, SeasonalitySize / 2, false, false);
var model = ml.Forecasting.ForecastBySsa(outputColumnName, inputColumnName, 5, 11, data.Count, 5);

// Train.
model.Train(dataView);
var transformer = model.Fit(dataView);

// Forecast next five values.
var forecast = model.Forecast(5);
var forecastEngine = transformer.CreateTimeSeriesEngine<TimeSeriesData, ForecastResult>(ml);
var forecast = forecastEngine.Predict();

Console.WriteLine($"Forecasted values:");
Console.WriteLine("[{0}]", string.Join(", ", forecast));
Console.WriteLine("[{0}]", string.Join(", ", forecast.Forecast));
// Forecasted values:
// [2.452744, 2.589339, 2.729183, 2.873005, 3.028931]
// [1.977226, 1.020494, 1.760543, 3.437509, 4.266461]

// Update with new observations.
dataView = ml.Data.LoadFromEnumerable(new List<TimeSeriesData>() { new TimeSeriesData(0), new TimeSeriesData(0), new TimeSeriesData(0), new TimeSeriesData(0) });
model.Update(dataView);
forecastEngine.Predict(new TimeSeriesData(0));
forecastEngine.Predict(new TimeSeriesData(0));
forecastEngine.Predict(new TimeSeriesData(0));
forecastEngine.Predict(new TimeSeriesData(0));

// Checkpoint.
ml.Model.SaveForecastingModel(model, "model.zip");
forecastEngine.CheckPoint(ml, "model.zip");

// Load the checkpointed model from disk.
var modelCopy = ml.Model.LoadForecastingModel<float>("model.zip");
// Load the model.
ITransformer modelCopy;
using (var file = File.OpenRead("model.zip"))
modelCopy = ml.Model.Load(file, out DataViewSchema schema);

// We must create a new prediction engine from the persisted model.
var forecastEngineCopy = modelCopy.CreateTimeSeriesEngine<TimeSeriesData, ForecastResult>(ml);

// Forecast with the checkpointed model loaded from disk.
forecast = modelCopy.Forecast(5);
Console.WriteLine("[{0}]", string.Join(", ", forecast));
// [0.8681176, 0.8185108, 0.8069275, 0.84405, 0.9455081]
forecast = forecastEngineCopy.Predict();
Console.WriteLine("[{0}]", string.Join(", ", forecast.Forecast));
// [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]

// Forecast with the original model(that was checkpointed to disk).
forecast = model.Forecast(5);
Console.WriteLine("[{0}]", string.Join(", ", forecast));
// [0.8681176, 0.8185108, 0.8069275, 0.84405, 0.9455081]
forecast = forecastEngine.Predict();
Console.WriteLine("[{0}]", string.Join(", ", forecast.Forecast));
// [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]

}

class ForecastResult
{
public float[] Forecast { get; set; }
}

class TimeSeriesData
{
public float Value;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Transforms.TimeSeries;
using Microsoft.ML.TimeSeries;
using System.IO;

namespace Samples.Dynamic
{
Expand All @@ -16,8 +16,7 @@ public static void Example()
// as well as the source of randomness.
var ml = new MLContext();

// Generate sample series data with a recurring pattern
const int SeasonalitySize = 5;
// Generate sample series data with a recurring pattern.
var data = new List<TimeSeriesData>()
{
new TimeSeriesData(0),
Expand All @@ -44,50 +43,58 @@ public static void Example()

// Setup arguments.
var inputColumnName = nameof(TimeSeriesData.Value);
var outputColumnName = nameof(ForecastResult.Forecast);

// Instantiate forecasting model.
var model = ml.Forecasting.AdaptiveSingularSpectrumSequenceModeler(inputColumnName, data.Count, SeasonalitySize + 1, SeasonalitySize,
1, AdaptiveSingularSpectrumSequenceModeler.RankSelectionMethod.Exact, null, SeasonalitySize / 2, shouldComputeForecastIntervals: true, false);
// Instantiate the forecasting model.
var model = ml.Forecasting.ForecastBySsa(outputColumnName, inputColumnName, 5, 11, data.Count, 5,
confidenceLevel: 0.95f,
forcastingConfidentLowerBoundColumnName: "ConfidenceLowerBound",
forcastingConfidentUpperBoundColumnName: "ConfidenceUpperBound");

// Train.
model.Train(dataView);

// Forecast next five values with confidence internal.
float[] forecast;
float[] confidenceIntervalLowerBounds;
float[] confidenceIntervalUpperBounds;
model.ForecastWithConfidenceIntervals(5, out forecast, out confidenceIntervalLowerBounds, out confidenceIntervalUpperBounds);
PrintForecastValuesAndIntervals(forecast, confidenceIntervalLowerBounds, confidenceIntervalUpperBounds);
var transformer = model.Fit(dataView);

// Forecast next five values.
var forecastEngine = transformer.CreateTimeSeriesEngine<TimeSeriesData, ForecastResult>(ml);
var forecast = forecastEngine.Predict();

PrintForecastValuesAndIntervals(forecast.Forecast, forecast.ConfidenceLowerBound, forecast.ConfidenceUpperBound);
// Forecasted values:
// [2.452744, 2.589339, 2.729183, 2.873005, 3.028931]
// [1.977226, 1.020494, 1.760543, 3.437509, 4.266461]
// Confidence intervals:
// [-0.2235315 - 5.12902] [-0.08777174 - 5.266451] [0.05076938 - 5.407597] [0.1925406 - 5.553469] [0.3469928 - 5.71087]
// [0.3451088 - 3.609343] [-0.7967533 - 2.83774] [-0.058467 - 3.579552] [1.61505 - 5.259968] [2.349299 - 6.183623]

// Update with new observations.
dataView = ml.Data.LoadFromEnumerable(new List<TimeSeriesData>() { new TimeSeriesData(0), new TimeSeriesData(0), new TimeSeriesData(0), new TimeSeriesData(0) });
model.Update(dataView);
forecastEngine.Predict(new TimeSeriesData(0));
forecastEngine.Predict(new TimeSeriesData(0));
forecastEngine.Predict(new TimeSeriesData(0));
forecastEngine.Predict(new TimeSeriesData(0));

// Checkpoint.
ml.Model.SaveForecastingModel(model, "model.zip");
forecastEngine.CheckPoint(ml, "model.zip");

// Load the checkpointed model from disk.
var modelCopy = ml.Model.LoadForecastingModel<float>("model.zip");
// Load the model.
ITransformer modelCopy;
using (var file = File.OpenRead("model.zip"))
modelCopy = ml.Model.Load(file, out DataViewSchema schema);

// We must create a new prediction engine from the persisted model.
var forecastEngineCopy = modelCopy.CreateTimeSeriesEngine<TimeSeriesData, ForecastResult>(ml);

// Forecast with the checkpointed model loaded from disk.
modelCopy.ForecastWithConfidenceIntervals(5, out forecast, out confidenceIntervalLowerBounds, out confidenceIntervalUpperBounds);
PrintForecastValuesAndIntervals(forecast, confidenceIntervalLowerBounds, confidenceIntervalUpperBounds);
// Forecasted values:
// [0.8681176, 0.8185108, 0.8069275, 0.84405, 0.9455081]
forecast = forecastEngineCopy.Predict();
PrintForecastValuesAndIntervals(forecast.Forecast, forecast.ConfidenceLowerBound, forecast.ConfidenceUpperBound);
// [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]
// Confidence intervals:
// [-1.808158 - 3.544394] [-1.8586 - 3.495622] [-1.871486 - 3.485341] [-1.836414 - 3.524514] [-1.736431 - 3.627447]
// [0.1592142 - 3.423448] [-0.5617217 - 3.072772] [-1.512994 - 2.125025] [-2.022905 - 1.622013] [-1.351382 - 2.482941]

// Forecast with the original model(that was checkpointed to disk).
model.ForecastWithConfidenceIntervals(5, out forecast, out confidenceIntervalLowerBounds, out confidenceIntervalUpperBounds);
PrintForecastValuesAndIntervals(forecast, confidenceIntervalLowerBounds, confidenceIntervalUpperBounds);
// Forecasted values:
// [0.8681176, 0.8185108, 0.8069275, 0.84405, 0.9455081]
forecast = forecastEngine.Predict();
PrintForecastValuesAndIntervals(forecast.Forecast, forecast.ConfidenceLowerBound, forecast.ConfidenceUpperBound);
// [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]
// Confidence intervals:
// [-1.808158 - 3.544394] [-1.8586 - 3.495622] [-1.871486 - 3.485341] [-1.836414 - 3.524514] [-1.736431 - 3.627447]
// [0.1592142 - 3.423448] [-0.5617217 - 3.072772] [-1.512994 - 2.125025] [-2.022905 - 1.622013] [-1.351382 - 2.482941]
}

static void PrintForecastValuesAndIntervals(float[] forecast, float[] confidenceIntervalLowerBounds, float[] confidenceIntervalUpperBounds)
Expand All @@ -100,6 +107,13 @@ static void PrintForecastValuesAndIntervals(float[] forecast, float[] confidence
Console.WriteLine();
}

class ForecastResult
{
public float[] Forecast { get; set; }
public float[] ConfidenceLowerBound { get; set; }
public float[] ConfidenceUpperBound { get; set; }
}

class TimeSeriesData
{
public float Value;
Expand Down
1 change: 1 addition & 0 deletions docs/samples/Microsoft.ML.Samples/Program.cs
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
using System;
using System.Reflection;
using Samples.Dynamic;

namespace Microsoft.ML.Samples
{
Expand Down
Loading