Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added sample for WithOnFitDelegate #3738

Merged
merged 1 commit into from
May 17, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
75 changes: 75 additions & 0 deletions docs/samples/Microsoft.ML.Samples/Dynamic/WithOnFitDelegate.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using static Microsoft.ML.Transforms.NormalizingTransformer;

namespace Samples.Dynamic
{
public class WithOnFitDelegate
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for exception tracking and logging,
// as well as the source of randomness.
var mlContext = new MLContext();
var samples = new List<DataPoint>()
{
new DataPoint(){ Features = new float[4] { 8, 1, 3, 0}, Label = true },
new DataPoint(){ Features = new float[4] { 6, 2, 2, 0}, Label = true },
new DataPoint(){ Features = new float[4] { 4, 0, 1, 0}, Label = false },
new DataPoint(){ Features = new float[4] { 2,-1,-1, 1}, Label = false }
};
// Convert training data to IDataView, the general data type used in ML.NET.
var data = mlContext.Data.LoadFromEnumerable(samples);

// Create a pipeline to normalize the features and train a binary classifier.
// We use WithOnFitDelegate for the intermediate binning normalization step,
// so that we can inspect the properties of the normalizer after fitting.
NormalizingTransformer binningTransformer = null;
var pipeline =
mlContext.Transforms.NormalizeBinning("Features", maximumBinCount: 3)
.WithOnFitDelegate(fittedTransformer => binningTransformer = fittedTransformer)
.Append(mlContext.BinaryClassification.Trainers.LbfgsLogisticRegression());

Console.WriteLine(binningTransformer == null);
// Expected Output:
// True

var model = pipeline.Fit(data);

// During fitting binningTransformer will get assigned a new value
Console.WriteLine(binningTransformer == null);
// Expected Output:
// False

// Inspect some of the properties of the binning transformer
var binningParam = binningTransformer.GetNormalizerModelParameters(0) as
BinNormalizerModelParameters<ImmutableArray<float>>;

for (int i = 0; i < binningParam.UpperBounds.Length; i++)
{
var upperBounds = string.Join(", ", binningParam.UpperBounds[i]);
Console.WriteLine(
$"Bin {i}: Density = {binningParam.Density[i]}, " +
$"Upper-bounds = {upperBounds}");
}
// Expected output:
// Bin 0: Density = 2, Upper-bounds = 3, 7, Infinity
// Bin 1: Density = 2, Upper-bounds = -0.5, 1.5, Infinity
// Bin 2: Density = 2, Upper-bounds = 0, 2.5, Infinity
// Bin 3: Density = 1, Upper-bounds = 0.5, Infinity
}

private class DataPoint
{
[VectorType(4)]
public float[] Features { get; set; }
public bool Label { get; set; }
}
}
}

7 changes: 7 additions & 0 deletions src/Microsoft.ML.Data/DataLoadSave/EstimatorExtensions.cs
Original file line number Diff line number Diff line change
Expand Up @@ -135,6 +135,13 @@ public SchemaShape GetOutputSchema(SchemaShape inputSchema)
/// <see cref="IEstimator{TTransformer}.Fit(IDataView)"/> is called. Because <see cref="IEstimator{TTransformer}.Fit(IDataView)"/>
/// may be called multiple times, this delegate may also be called multiple times.</param>
/// <returns>A wrapping estimator that calls the indicated delegate whenever fit is called</returns>
/// <example>
/// <format type="text/markdown">
/// <![CDATA[
/// [!code-csharp[OnFit](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/WithOnFitDelegate.cs)]
/// ]]>
/// </format>
/// </example>
public static IEstimator<TTransformer> WithOnFitDelegate<TTransformer>(this IEstimator<TTransformer> estimator, Action<TTransformer> onFit)
where TTransformer : class, ITransformer
{
Expand Down