Skip to content

Upgrade matrix factorization samples #3362

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Apr 17, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -1,69 +1,106 @@
using System;
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using static Microsoft.ML.SamplesUtils.DatasetUtils;
using Microsoft.ML.Data;

namespace Samples.Dynamic.Trainers.Recommendation
{
public static class MatrixFactorization
{

// This example requires installation of additional nuget package <a href="https://www.nuget.org/packages/Microsoft.ML.Recommender/">Microsoft.ML.Recommender</a>.
// In this example we will create in-memory data and then use it to train
// a matrix factorization model with default parameters. Afterward, quality metrics are reported.

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Isn't this comment informative?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Fixed. Thanks.

public static void Example()
{
// Create a new context for ML.NET operations. It can be used for exception tracking and logging,
// Create a new context for ML.NET operations. It can be used for exception tracking and logging,
// as a catalog of available operations and as the source of randomness.
// Setting the seed to a fixed number in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);

// Get a small in-memory dataset.
var data = GetRecommendationData();
// Create a list of training data points.
var dataPoints = GenerateMatrix();

// Convert the in-memory matrix into an IDataView so that ML.NET components can consume it.
var dataView = mlContext.Data.LoadFromEnumerable(data);
// Convert the list of data points to an IDataView object, which is consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

// Create a matrix factorization trainer which may consume "Value" as the training label, "MatrixColumnIndex" as the
// matrix's column index, and "MatrixRowIndex" as the matrix's row index. Here nameof(...) is used to extract field
// names' in MatrixElement class.
// Define the trainer.
var pipeline = mlContext.Recommendation().Trainers.MatrixFactorization(nameof(MatrixElement.Value), nameof(MatrixElement.MatrixColumnIndex),
nameof(MatrixElement.MatrixRowIndex), 10, 0.2, 10);

// Train a matrix factorization model.
var model = pipeline.Fit(dataView);

// Apply the trained model to the training set.
var prediction = model.Transform(dataView);

// Calculate regression matrices for the prediction result.
var metrics = mlContext.Recommendation().Evaluate(prediction,
labelColumnName: nameof(MatrixElement.Value), scoreColumnName: nameof(MatrixElementForScore.Score));
// Print out some metrics for checking the model's quality.
Microsoft.ML.SamplesUtils.ConsoleUtils.PrintMetrics(metrics);
// L1: 0.17
// L2: 0.05
// LossFunction: 0.05
// RMS: 0.22
// RSquared: 0.98

// Create two two entries for making prediction. Of course, the prediction value, Score, is unknown so it can be anything
// (here we use Score=0 and it will be overwritten by the true prediction). If any of row and column indexes are out-of-range
// (e.g., MatrixColumnIndex=99999), the prediction value will be NaN.
var testMatrix = new List<MatrixElementForScore>() {
new MatrixElementForScore() { MatrixColumnIndex = 1, MatrixRowIndex = 7, Score = 0 },
new MatrixElementForScore() { MatrixColumnIndex = 3, MatrixRowIndex = 6, Score = 0 } };

// Again, convert the test data to a format supported by ML.NET.
var testDataView = mlContext.Data.LoadFromEnumerable(testMatrix);
// Feed the test data into the model and then iterate through all predictions.
foreach (var pred in mlContext.Data.CreateEnumerable<MatrixElementForScore>(model.Transform(testDataView), false))
Console.WriteLine($"Predicted value at row {pred.MatrixRowIndex - 1} and column {pred.MatrixColumnIndex - 1} is {pred.Score}");

// Expected output similar to:
// Predicted value at row 7 and column 1 is 2.876928
// Predicted value at row 6 and column 3 is 3.587935
//
// Note: use the advanced options constructor to set the number of threads to 1 for a deterministic behavior.
nameof(MatrixElement.MatrixRowIndex), 10, 0.2, 1);

// Train the model.
var model = pipeline.Fit(trainingData);

// Run the model on training data set.
var transformedData = model.Transform(trainingData);

// Convert IDataView object to a list.
var predictions = mlContext.Data.CreateEnumerable<MatrixElement>(transformedData, reuseRowObject: false).Take(5).ToList();

// Look at 5 predictions for the Label, side by side with the actual Label for comparison.
foreach (var p in predictions)
Console.WriteLine($"Actual value: {p.Value:F3}, Predicted score: {p.Score:F3}");

// Expected output:
// Actual value: 0.000, Predicted score: 1.234
// Actual value: 1.000, Predicted score: 0.792
// Actual value: 2.000, Predicted score: 1.831
// Actual value: 3.000, Predicted score: 2.670
// Actual value: 4.000, Predicted score: 2.362

// Evaluate the overall metrics
var metrics = mlContext.Regression.Evaluate(transformedData, labelColumnName: nameof(MatrixElement.Value), scoreColumnName: nameof(MatrixElement.Score));
PrintMetrics(metrics);

// Expected output:
// Mean Absolute Error: 0.67:
// Mean Squared Error: 0.79
// Root Mean Squared Error: 0.89
// RSquared: 0.61 (closer to 1 is better. The worest case is 0)
}

// The following variables are used to define the shape of the example matrix. Its shape is MatrixRowCount-by-MatrixColumnCount.
// Because in ML.NET key type's minimal value is zero, the first row index is always zero in C# data structure (e.g., MatrixColumnIndex=0
// and MatrixRowIndex=0 in MatrixElement below specifies the value at the upper-left corner in the training matrix). If user's row index
// starts with 1, their row index 1 would be mapped to the 2nd row in matrix factorization module and their first row may contain no values.
// This behavior is also true to column index.
private const uint MatrixColumnCount = 60;
private const uint MatrixRowCount = 100;

// Generate a random matrix by specifying all its elements.
private static List<MatrixElement> GenerateMatrix()
{
var dataMatrix = new List<MatrixElement>();
for (uint i = 0; i < MatrixColumnCount; ++i)
for (uint j = 0; j < MatrixRowCount; ++j)
dataMatrix.Add(new MatrixElement() { MatrixColumnIndex = i, MatrixRowIndex = j, Value = (i + j) % 5 });
return dataMatrix;
}

// A class used to define a matrix element and capture its prediction result.
private class MatrixElement
{
// Matrix column index. Its allowed range is from 0 to MatrixColumnCount - 1.
[KeyType(MatrixColumnCount)]
public uint MatrixColumnIndex { get; set; }
// Matrix row index. Its allowed range is from 0 to MatrixRowCount - 1.
[KeyType(MatrixRowCount)]
public uint MatrixRowIndex { get; set; }
// The actual value at the MatrixColumnIndex-th column and the MatrixRowIndex-th row.
public float Value { get; set; }
// The predicted value at the MatrixColumnIndex-th column and the MatrixRowIndex-th row.
public float Score { get; set; }
}

// Print some evaluation metrics to regression problems.
private static void PrintMetrics(RegressionMetrics metrics)
{
Console.WriteLine($"Mean Absolute Error: {metrics.MeanAbsoluteError:F2}");
Console.WriteLine($"Mean Squared Error: {metrics.MeanSquaredError:F2}");
Console.WriteLine($"Root Mean Squared Error: {metrics.RootMeanSquaredError:F2}");
Console.WriteLine($"RSquared: {metrics.RSquared:F2}");
}
}
}

Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
<#@ include file="MatrixFactorizationTemplate.ttinclude"#>

<#+
string ClassHeader = @"
// This example requires installation of additional nuget package <a href=""https://www.nuget.org/packages/Microsoft.ML.Recommender/"">Microsoft.ML.Recommender</a>.
// In this example we will create in-memory data and then use it to train
// a matrix factorization model with default parameters. Afterward, quality metrics are reported.";
string ClassName="MatrixFactorization";
string ExtraUsing = null;
string Trainer = @"MatrixFactorization(nameof(MatrixElement.Value), nameof(MatrixElement.MatrixColumnIndex),
nameof(MatrixElement.MatrixRowIndex), 10, 0.2, 1)";
string TrainerOptions = null;

string ExpectedOutputPerInstance= @"// Expected output:
// Actual value: 0.000, Predicted score: 1.234
// Actual value: 1.000, Predicted score: 0.792
// Actual value: 2.000, Predicted score: 1.831
// Actual value: 3.000, Predicted score: 2.670
// Actual value: 4.000, Predicted score: 2.362";

string ExpectedOutput = @"// Expected output:
// Mean Absolute Error: 0.67:
// Mean Squared Error: 0.79
// Root Mean Squared Error: 0.89
// RSquared: 0.61 (closer to 1 is better. The worest case is 0)";
#>
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
<# if (ExtraUsing != null) { #>
<#=ExtraUsing#>
<# } #>

namespace Samples.Dynamic.Trainers.Recommendation
{
public static class <#=ClassName#>
{
<# if (ClassHeader != null) { #>
<#=ClassHeader#>
<# } #>
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for exception tracking and logging,
// as a catalog of available operations and as the source of randomness.
// Setting the seed to a fixed number in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);

// Create a list of training data points.
var dataPoints = GenerateMatrix();

// Convert the list of data points to an IDataView object, which is consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

<# if (TrainerOptions == null) { #>
// Define the trainer.
var pipeline = mlContext.Recommendation().Trainers.<#=Trainer#>;
<# } else { #>
// Define trainer options.
var options = new <#=TrainerOptions#>;

// Define the trainer.
var pipeline = mlContext.Recommendation().Trainers.<#=Trainer#>(options);
<# } #>

// Train the model.
var model = pipeline.Fit(trainingData);

// Run the model on training data set.
var transformedData = model.Transform(trainingData);

// Convert IDataView object to a list.
var predictions = mlContext.Data.CreateEnumerable<MatrixElement>(transformedData, reuseRowObject: false).Take(5).ToList();

// Look at 5 predictions for the Label, side by side with the actual Label for comparison.
foreach (var p in predictions)
Console.WriteLine($"Actual value: {p.Value:F3}, Predicted score: {p.Score:F3}");

<#=ExpectedOutputPerInstance#>

// Evaluate the overall metrics
var metrics = mlContext.Regression.Evaluate(transformedData, labelColumnName: nameof(MatrixElement.Value), scoreColumnName: nameof(MatrixElement.Score));
PrintMetrics(metrics);

<#=ExpectedOutput#>
}

// The following variables are used to define the shape of the example matrix. Its shape is MatrixRowCount-by-MatrixColumnCount.
// Because in ML.NET key type's minimal value is zero, the first row index is always zero in C# data structure (e.g., MatrixColumnIndex=0
// and MatrixRowIndex=0 in MatrixElement below specifies the value at the upper-left corner in the training matrix). If user's row index
// starts with 1, their row index 1 would be mapped to the 2nd row in matrix factorization module and their first row may contain no values.
// This behavior is also true to column index.
private const uint MatrixColumnCount = 60;
private const uint MatrixRowCount = 100;

// Generate a random matrix by specifying all its elements.
private static List<MatrixElement> GenerateMatrix()
{
var dataMatrix = new List<MatrixElement>();
for (uint i = 0; i < MatrixColumnCount; ++i)
for (uint j = 0; j < MatrixRowCount; ++j)
dataMatrix.Add(new MatrixElement() { MatrixColumnIndex = i, MatrixRowIndex = j, Value = (i + j) % 5 });
return dataMatrix;
}

// A class used to define a matrix element and capture its prediction result.
private class MatrixElement
{
// Matrix column index. Its allowed range is from 0 to MatrixColumnCount - 1.
[KeyType(MatrixColumnCount)]
public uint MatrixColumnIndex { get; set; }
// Matrix row index. Its allowed range is from 0 to MatrixRowCount - 1.
[KeyType(MatrixRowCount)]
public uint MatrixRowIndex { get; set; }
// The actual value at the MatrixColumnIndex-th column and the MatrixRowIndex-th row.
public float Value { get; set; }
// The predicted value at the MatrixColumnIndex-th column and the MatrixRowIndex-th row.
public float Score { get; set; }
}

// Print some evaluation metrics to regression problems.
private static void PrintMetrics(RegressionMetrics metrics)
{
Console.WriteLine($"Mean Absolute Error: {metrics.MeanAbsoluteError:F2}");
Console.WriteLine($"Mean Squared Error: {metrics.MeanSquaredError:F2}");
Console.WriteLine($"Root Mean Squared Error: {metrics.RootMeanSquaredError:F2}");
Console.WriteLine($"RSquared: {metrics.RSquared:F2}");
}
}
}
Loading