Skip to content

Multiclass Classification Samples Update #3322

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Apr 16, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic.Trainers.MulticlassClassification
{
public static class LbfgsMaximumEntropy
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for exception tracking and logging,
// as a catalog of available operations and as the source of randomness.
// Setting the seed to a fixed number in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);

// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);

// Convert the list of data points to an IDataView object, which is consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

// Define the trainer.
var pipeline =
// Convert the string labels into key types.
mlContext.Transforms.Conversion.MapValueToKey(nameof(DataPoint.Label))
// Apply LbfgsMaximumEntropy multiclass trainer.
.Append(mlContext.MulticlassClassification.Trainers.LbfgsMaximumEntropy());

// Train the model.
var model = pipeline.Fit(trainingData);

// Create testing data. Use different random seed to make it different from training data.
var testData = mlContext.Data.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

// Run the model on test data set.
var transformedTestData = model.Transform(testData);

// Convert IDataView object to a list.
var predictions = mlContext.Data.CreateEnumerable<Prediction>(transformedTestData, reuseRowObject: false).ToList();

// Look at 5 predictions
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, Prediction: {p.PredictedLabel}");

// Expected output:
// Label: 1, Prediction: 1
// Label: 2, Prediction: 2
// Label: 3, Prediction: 2
// Label: 2, Prediction: 2
// Label: 3, Prediction: 3

// Evaluate the overall metrics
var metrics = mlContext.MulticlassClassification.Evaluate(transformedTestData);
PrintMetrics(metrics);

// Expected output:
// Micro Accuracy: 0.91
// Macro Accuracy: 0.91
// Log Loss: 0.24
// Log Loss Reduction: 0.79
}

// Generates random uniform doubles in [-0.5, 0.5) range with labels 1, 2 or 3.
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count, int seed=0)
{
var random = new Random(seed);
float randomFloat() => (float)(random.NextDouble() - 0.5);
for (int i = 0; i < count; i++)
{
// Generate Labels that are integers 1, 2 or 3
var label = random.Next(1, 4);
yield return new DataPoint
{
Label = (uint)label,
// Create random features that are correlated with the label.
// The feature values are slightly increased by adding a constant multiple of label.
Features = Enumerable.Repeat(label, 20).Select(x => randomFloat() + label * 0.2f).ToArray()
};
}
}

// Example with label and 20 feature values. A data set is a collection of such examples.
private class DataPoint
{
public uint Label { get; set; }
[VectorType(20)]
public float[] Features { get; set; }
}

// Class used to capture predictions.
private class Prediction
{
// Original label.
public uint Label { get; set; }
// Predicted label from the trainer.
public uint PredictedLabel { get; set; }
}

// Pretty-print MulticlassClassificationMetrics objects.
public static void PrintMetrics(MulticlassClassificationMetrics metrics)
{
Console.WriteLine($"Micro Accuracy: {metrics.MicroAccuracy:F2}");
Console.WriteLine($"Macro Accuracy: {metrics.MacroAccuracy:F2}");
Console.WriteLine($"Log Loss: {metrics.LogLoss:F2}");
Console.WriteLine($"Log Loss Reduction: {metrics.LogLossReduction:F2}");
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
<#@ include file="MulticlassClassification.ttinclude"#>
<#+
string ClassName = "LbfgsMaximumEntropy";
string Trainer = "LbfgsMaximumEntropy";
string MetaTrainer = null;
string TrainerOptions = null;

string OptionsInclude = "";
string Comments = "";
bool CacheData = false;
string DataGenerationComments= "// Generates random uniform doubles in [-0.5, 0.5) range with labels 1, 2 or 3.";

string ExpectedOutputPerInstance = @"// Expected output:
// Label: 1, Prediction: 1
// Label: 2, Prediction: 2
// Label: 3, Prediction: 2
// Label: 2, Prediction: 2
// Label: 3, Prediction: 3";

string ExpectedOutput = @"// Expected output:
// Micro Accuracy: 0.91
// Macro Accuracy: 0.91
// Log Loss: 0.24
// Log Loss Reduction: 0.79";
#>
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers;

namespace Samples.Dynamic.Trainers.MulticlassClassification
{
public static class LbfgsMaximumEntropyWithOptions
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for exception tracking and logging,
// as a catalog of available operations and as the source of randomness.
// Setting the seed to a fixed number in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);

// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);

// Convert the list of data points to an IDataView object, which is consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

// Define trainer options.
var options = new LbfgsMaximumEntropyMulticlassTrainer.Options
{
HistorySize = 50,
L1Regularization = 0.1f,
NumberOfThreads = 1
};

// Define the trainer.
var pipeline =
// Convert the string labels into key types.
mlContext.Transforms.Conversion.MapValueToKey("Label")
// Apply LbfgsMaximumEntropy multiclass trainer.
.Append(mlContext.MulticlassClassification.Trainers.LbfgsMaximumEntropy(options));


// Train the model.
var model = pipeline.Fit(trainingData);

// Create testing data. Use different random seed to make it different from training data.
var testData = mlContext.Data.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

// Run the model on test data set.
var transformedTestData = model.Transform(testData);

// Convert IDataView object to a list.
var predictions = mlContext.Data.CreateEnumerable<Prediction>(transformedTestData, reuseRowObject: false).ToList();

// Look at 5 predictions
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, Prediction: {p.PredictedLabel}");

// Expected output:
// Label: 1, Prediction: 1
// Label: 2, Prediction: 2
// Label: 3, Prediction: 2
// Label: 2, Prediction: 2
// Label: 3, Prediction: 3

// Evaluate the overall metrics
var metrics = mlContext.MulticlassClassification.Evaluate(transformedTestData);
PrintMetrics(metrics);

// Expected output:
// Micro Accuracy: 0.91
// Macro Accuracy: 0.91
// Log Loss: 0.22
// Log Loss Reduction: 0.80
}

// Generates random uniform doubles in [-0.5, 0.5) range with labels 1, 2 or 3.
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count, int seed=0)
{
var random = new Random(seed);
float randomFloat() => (float)(random.NextDouble() - 0.5);
for (int i = 0; i < count; i++)
{
// Generate Labels that are integers 1, 2 or 3
var label = random.Next(1, 4);
yield return new DataPoint
{
Label = (uint)label,
// Create random features that are correlated with the label.
// The feature values are slightly increased by adding a constant multiple of label.
Features = Enumerable.Repeat(label, 20).Select(x => randomFloat() + label * 0.2f).ToArray()
};
}
}

// Example with label and 20 feature values. A data set is a collection of such examples.
private class DataPoint
{
public uint Label { get; set; }
[VectorType(20)]
public float[] Features { get; set; }
}

// Class used to capture predictions.
private class Prediction
{
// Original label.
public uint Label { get; set; }
// Predicted label from the trainer.
public uint PredictedLabel { get; set; }
}

// Pretty-print MulticlassClassificationMetrics objects.
public static void PrintMetrics(MulticlassClassificationMetrics metrics)
{
Console.WriteLine($"Micro Accuracy: {metrics.MicroAccuracy:F2}");
Console.WriteLine($"Macro Accuracy: {metrics.MacroAccuracy:F2}");
Console.WriteLine($"Log Loss: {metrics.LogLoss:F2}");
Console.WriteLine($"Log Loss Reduction: {metrics.LogLossReduction:F2}");
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
<#@ include file="MulticlassClassification.ttinclude"#>
<#+
string ClassName = "LbfgsMaximumEntropyWithOptions";
string Trainer = "LbfgsMaximumEntropy";
string MetaTrainer = null;
string TrainerOptions = @"LbfgsMaximumEntropyMulticlassTrainer.Options
{
HistorySize = 50,
L1Regularization = 0.1f,
NumberOfThreads = 1
}";

string OptionsInclude = "using Microsoft.ML.Trainers;";
string Comments = "";
string DataGenerationComments= "// Generates random uniform doubles in [-0.5, 0.5) range with labels 1, 2 or 3.";
bool CacheData = false;

string ExpectedOutputPerInstance = @"// Expected output:
// Label: 1, Prediction: 1
// Label: 2, Prediction: 2
// Label: 3, Prediction: 2
// Label: 2, Prediction: 2
// Label: 3, Prediction: 3";

string ExpectedOutput = @"// Expected output:
// Micro Accuracy: 0.91
// Macro Accuracy: 0.91
// Log Loss: 0.22
// Log Loss Reduction: 0.80";
#>
Loading