Skip to content

Samples second pass for Clustering Trainer #3317

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Apr 17, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
<# if (TrainerOptions != null) { #>
<#=OptionsInclude#>
<# } #>

namespace Samples.Dynamic.Trainers.Clustering
{
public static class <#=ClassName#>
{<#=Comments#>
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for exception tracking and logging,
// as a catalog of available operations and as the source of randomness.
// Setting the seed to a fixed number in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);

// Convert the list of data points to an IDataView object, which is consumable by ML.NET API.
var dataPoints = GenerateRandomDataPoints(1000, <#=DataSeed#>);

// Convert the list of data points to an IDataView object, which is consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

<# if (TrainerOptions == null) { #>
// Define the trainer.
var pipeline = mlContext.Clustering.Trainers.<#=Trainer#>(<#=InlineTrainerOptions#>);
<# } else { #>
// Define trainer options.
var options = new <#=TrainerOptions#>;

// Define the trainer.
var pipeline = mlContext.Clustering.Trainers.<#=Trainer#>(options);
<# } #>

// Train the model.
var model = pipeline.Fit(trainingData);

// Create testing data. Use different random seed to make it different from training data.
var testData = mlContext.Data.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

// Run the model on test data set.
var transformedTestData = model.Transform(testData);

// Convert IDataView object to a list.
var predictions = mlContext.Data.CreateEnumerable<Prediction>(transformedTestData, reuseRowObject: false).ToList();

// Print 5 predictions. Note that the label is only used as a comparison wiht the predicted label.
// It is not used during training.
foreach (var p in predictions.Take(2))
Console.WriteLine($"Label: {p.Label}, Prediction: {p.PredictedLabel}");
foreach (var p in predictions.TakeLast(3))
Console.WriteLine($"Label: {p.Label}, Prediction: {p.PredictedLabel}");
Copy link
Contributor

@rogancarr rogancarr Apr 12, 2019

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Most of the time, clustering doesn't have a label. Maybe we should make one sample for labeled clustering, one for label-free clustering. #Resolved

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I added some comments to explain that the Label column is not used during training. This is simply for comparison with the predicted label.


In reply to: 275080292 [](ancestors = 275080292)


<#=ExpectedOutputPerInstance#>

// Evaluate the overall metrics
var metrics = mlContext.Clustering.Evaluate(transformedTestData, "Label", "Score", "Features");
PrintMetrics(metrics);

<#=ExpectedOutput#>

// Get cluster centroids and the number of clusters k from KMeansModelParameters.
VBuffer<float>[] centroids = default;

var modelParams = model.Model;
modelParams.GetClusterCentroids(ref centroids, out int k);
Console.WriteLine($"The first 3 coordinates of the first centroid are: ({string.Join(", ", centroids[0].GetValues().ToArray().Take(3))})");
Console.WriteLine($"The first 3 coordinates of the second centroid are: ({string.Join(", ", centroids[1].GetValues().ToArray().Take(3))})");

<#=ExpectedCentroidsOutput#>
}

private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count, int seed = 0)
Copy link
Contributor

@rogancarr rogancarr Apr 12, 2019

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

int count [](start = 71, length = 9)

Set this to the default used above. #Resolved

Copy link
Contributor

@rogancarr rogancarr Apr 12, 2019

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

int seed = 0 [](start = 82, length = 12)

I'm superstitious about passing a 0 to someone else's random number generator. Maybe 1? #Pending

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We use 0 in all our templates for the method GenerateRandomDataPoints. I don't see what it should be an issue


In reply to: 275080461 [](ancestors = 275080461)

{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
Copy link
Contributor

@rogancarr rogancarr Apr 12, 2019

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

(float)random.NextDouble() [](start = 35, length = 26)

- 0.5f #Pending

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I don't think that centering at 0 will give any significant advantage.


In reply to: 275080652 [](ancestors = 275080652)

for (int i = 0; i < count; i++)
{
int label = i < count / 2 ? 0 : 1;
yield return new DataPoint
{
Label = (uint)label,
// Create random features with two clusters.
// The first half has feature values centered around 0.6 the second half has values centered around 0.4.
Features = Enumerable.Repeat(label, 50).Select(index => label == 0 ? randomFloat() + 0.1f : randomFloat() - 0.1f).ToArray()
};
}
}

// Example with label and 50 feature values. A data set is a collection of such examples.
private class DataPoint
{
// The label is not used during training, just for comparison with the predicted label.
[KeyType(2)]
public uint Label { get; set; }

[VectorType(50)]
public float[] Features { get; set; }
}

// Class used to capture predictions.
private class Prediction
{
// Original label (not used during training, just for comparison).
public uint Label { get; set; }
// Predicted label from the trainer.
public uint PredictedLabel { get; set; }
}

// Pretty-print of ClusteringMetrics object.
private static void PrintMetrics(ClusteringMetrics metrics)
{
Console.WriteLine($"Normalized Mutual Information: {metrics.NormalizedMutualInformation:F2}");
Console.WriteLine($"Average Distance: {metrics.AverageDistance:F2}");
Console.WriteLine($"Davies Bouldin Index: {metrics.DaviesBouldinIndex:F2}");
}
}
}
137 changes: 103 additions & 34 deletions docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Clustering/KMeans.cs
Original file line number Diff line number Diff line change
@@ -1,51 +1,120 @@
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
namespace Samples.Dynamic.Trainers.Clustering
{
public class KMeans
public static class KMeans
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for exception tracking and logging,
// as well as the source of randomness.
var ml = new MLContext(seed: 1);

// Get a small dataset as an IEnumerable and convert it to an IDataView.
var data = Microsoft.ML.SamplesUtils.DatasetUtils.GetInfertData();
var trainData = ml.Data.LoadFromEnumerable(data);

// Preview of the data.
//
// Age Case Education Induced Parity PooledStratum RowNum ...
// 26 1 0-5yrs 1 6 3 1 ...
// 42 1 0-5yrs 1 1 1 2 ...
// 39 1 0-5yrs 2 6 4 3 ...
// 34 1 0-5yrs 2 4 2 4 ...
// 35 1 6-11yrs 1 3 32 5 ...

// A pipeline for concatenating the age, parity and induced columns together in the Features column and training a KMeans model on them.
string outputColumnName = "Features";
var pipeline = ml.Transforms.Concatenate(outputColumnName, new[] { "Age", "Parity", "Induced" })
.Append(ml.Clustering.Trainers.KMeans(outputColumnName, numberOfClusters: 2));

var model = pipeline.Fit(trainData);
// Create a new context for ML.NET operations. It can be used for exception tracking and logging,
// as a catalog of available operations and as the source of randomness.
// Setting the seed to a fixed number in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);

// Convert the list of data points to an IDataView object, which is consumable by ML.NET API.
var dataPoints = GenerateRandomDataPoints(1000, 123);

// Convert the list of data points to an IDataView object, which is consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

// Define the trainer.
var pipeline = mlContext.Clustering.Trainers.KMeans(numberOfClusters: 2);

// Train the model.
var model = pipeline.Fit(trainingData);

// Create testing data. Use different random seed to make it different from training data.
var testData = mlContext.Data.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

// Run the model on test data set.
var transformedTestData = model.Transform(testData);

// Convert IDataView object to a list.
var predictions = mlContext.Data.CreateEnumerable<Prediction>(transformedTestData, reuseRowObject: false).ToList();

// Print 5 predictions. Note that the label is only used as a comparison wiht the predicted label.
// It is not used during training.
foreach (var p in predictions.Take(2))
Console.WriteLine($"Label: {p.Label}, Prediction: {p.PredictedLabel}");
foreach (var p in predictions.TakeLast(3))
Console.WriteLine($"Label: {p.Label}, Prediction: {p.PredictedLabel}");

// Expected output:
// Label: 1, Prediction: 1
// Label: 1, Prediction: 1
// Label: 2, Prediction: 2
// Label: 2, Prediction: 2
// Label: 2, Prediction: 2

// Evaluate the overall metrics
var metrics = mlContext.Clustering.Evaluate(transformedTestData, "Label", "Score", "Features");
PrintMetrics(metrics);

// Expected output:
// Normalized Mutual Information: 0.95
// Average Distance: 4.17
// Davies Bouldin Index: 2.87

// Get cluster centroids and the number of clusters k from KMeansModelParameters.
VBuffer<float>[] centroids = default;
int k;

var modelParams = model.LastTransformer.Model;
modelParams.GetClusterCentroids(ref centroids, out k);
var modelParams = model.Model;
modelParams.GetClusterCentroids(ref centroids, out int k);
Console.WriteLine($"The first 3 coordinates of the first centroid are: ({string.Join(", ", centroids[0].GetValues().ToArray().Take(3))})");
Console.WriteLine($"The first 3 coordinates of the second centroid are: ({string.Join(", ", centroids[1].GetValues().ToArray().Take(3))})");

// Expected output similar to:
// The first 3 coordinates of the first centroid are: (0.6035213, 0.6017533, 0.5964218)
// The first 3 coordinates of the second centroid are: (0.4031044, 0.4175443, 0.4082336)
}

private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count, int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
int label = i < count / 2 ? 0 : 1;
yield return new DataPoint
{
Label = (uint)label,
// Create random features with two clusters.
// The first half has feature values centered around 0.6 the second half has values centered around 0.4.
Features = Enumerable.Repeat(label, 50).Select(index => label == 0 ? randomFloat() + 0.1f : randomFloat() - 0.1f).ToArray()
};
}
}

var centroid = centroids[0].GetValues();
Console.WriteLine($"The coordinates of centroid 0 are: ({string.Join(", ", centroid.ToArray())})");
// Example with label and 50 feature values. A data set is a collection of such examples.
private class DataPoint
{
// The label is not used during training, just for comparison with the predicted label.
[KeyType(2)]
public uint Label { get; set; }

// Expected output similar to:
// The coordinates of centroid 0 are: (26, 6, 1)
//
// Note: use the advanced options constructor to set the number of threads to 1 for a deterministic behavior.
[VectorType(50)]
public float[] Features { get; set; }
}

// Class used to capture predictions.
private class Prediction
{
// Original label (not used during training, just for comparison).
public uint Label { get; set; }
// Predicted label from the trainer.
public uint PredictedLabel { get; set; }
}

// Pretty-print of ClusteringMetrics object.
private static void PrintMetrics(ClusteringMetrics metrics)
{
Console.WriteLine($"Normalized Mutual Information: {metrics.NormalizedMutualInformation:F2}");
Console.WriteLine($"Average Distance: {metrics.AverageDistance:F2}");
Console.WriteLine($"Davies Bouldin Index: {metrics.DaviesBouldinIndex:F2}");
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
<#@ include file="Clustering.ttinclude"#>
<#+
string ClassName = "KMeans";
string Trainer = "KMeans";
string TrainerOptions = null;
string InlineTrainerOptions = "numberOfClusters: 2";
int DataSeed = 123;

string OptionsInclude = "";
string Comments = "";

string ExpectedOutputPerInstance = @"// Expected output:
// Label: 1, Prediction: 1
// Label: 1, Prediction: 1
// Label: 2, Prediction: 2
// Label: 2, Prediction: 2
// Label: 2, Prediction: 2";

string ExpectedOutput = @"// Expected output:
// Normalized Mutual Information: 0.95
// Average Distance: 4.17
// Davies Bouldin Index: 2.87";

string ExpectedCentroidsOutput = @"// Expected output similar to:
// The first 3 coordinates of the first centroid are: (0.6035213, 0.6017533, 0.5964218)
// The first 3 coordinates of the second centroid are: (0.4031044, 0.4175443, 0.4082336)";
#>
Loading