-
Notifications
You must be signed in to change notification settings - Fork 1.9k
Binary FastTree/Forest samples using T4 templates. #3035
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
99 changes: 99 additions & 0 deletions
99
docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/FastForest.cs
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,99 @@ | ||
using System; | ||
using System.Collections.Generic; | ||
using System.Linq; | ||
using Microsoft.ML.Data; | ||
|
||
namespace Microsoft.ML.Samples.Dynamic.Trainers.BinaryClassification | ||
{ | ||
public static class FastForest | ||
{ | ||
// This example requires installation of additional NuGet package | ||
// <a href="https://www.nuget.org/packages/Microsoft.ML.FastTree/">Microsoft.ML.FastTree</a>. | ||
public static void Example() | ||
{ | ||
// Create a new context for ML.NET operations. It can be used for exception tracking and logging, | ||
// as a catalog of available operations and as the source of randomness. | ||
// Setting the seed to a fixed number in this example to make outputs deterministic. | ||
var mlContext = new MLContext(seed: 0); | ||
|
||
// Create a list of training examples. | ||
var examples = GenerateRandomDataPoints(1000); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
dataPoints? #Resolved There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. |
||
|
||
// Convert the examples list to an IDataView object, which is consumable by ML.NET API. | ||
var trainingData = mlContext.Data.LoadFromEnumerable(examples); | ||
|
||
// Define the trainer. | ||
var pipeline = mlContext.BinaryClassification.Trainers.FastForest(); | ||
|
||
// Train the model. | ||
var model = pipeline.Fit(trainingData); | ||
|
||
// Create testing examples. Use different random seed to make it different from training data. | ||
var testData = mlContext.Data.LoadFromEnumerable(GenerateRandomDataPoints(500, seed:123)); | ||
|
||
// Run the model on test data set. | ||
var transformedTestData = model.Transform(testData); | ||
|
||
// Convert IDataView object to a list. | ||
var predictions = mlContext.Data.CreateEnumerable<Prediction>(transformedTestData, reuseRowObject: false).ToList(); | ||
|
||
// Look at 5 predictions | ||
foreach (var p in predictions.Take(5)) | ||
Console.WriteLine($"Label: {p.Label}, Prediction: {p.PredictedLabel}"); | ||
|
||
// Expected output: | ||
// Label: True, Prediction: True | ||
// Label: False, Prediction: False | ||
// Label: True, Prediction: True | ||
// Label: True, Prediction: True | ||
// Label: False, Prediction: False | ||
|
||
// Evaluate the overall metrics | ||
var metrics = mlContext.BinaryClassification.EvaluateNonCalibrated(transformedTestData); | ||
SamplesUtils.ConsoleUtils.PrintMetrics(metrics); | ||
|
||
// Expected output: | ||
// Accuracy: 0.74 | ||
// AUC: 0.83 | ||
// F1 Score: 0.74 | ||
// Negative Precision: 0.78 | ||
// Negative Recall: 0.71 | ||
// Positive Precision: 0.71 | ||
// Positive Recall: 0.78 | ||
} | ||
|
||
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count, int seed=0) | ||
{ | ||
var random = new Random(seed); | ||
float randomFloat() => (float)random.NextDouble(); | ||
for (int i = 0; i < count; i++) | ||
{ | ||
var label = randomFloat() > 0.5f; | ||
yield return new DataPoint | ||
{ | ||
Label = label, | ||
// Create random features that are correlated with label. | ||
Features = Enumerable.Repeat(label, 50).Select(x => x ? randomFloat() : randomFloat() + 0.03f).ToArray() | ||
}; | ||
} | ||
} | ||
|
||
// Example with label and 50 feature values. A data set is a collection of such examples. | ||
private class DataPoint | ||
{ | ||
public bool Label { get; set; } | ||
[VectorType(50)] | ||
public float[] Features { get; set; } | ||
} | ||
|
||
// Class used to capture predictions. | ||
private class Prediction | ||
{ | ||
// Original label. | ||
public bool Label { get; set; } | ||
// Predicted label from the trainer. | ||
public bool PredictedLabel { get; set; } | ||
} | ||
} | ||
} | ||
|
24 changes: 24 additions & 0 deletions
24
docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/FastForest.tt
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
<#@ include file="TreeSamplesTemplate.ttinclude"#> | ||
|
||
<#+ | ||
string ClassName="FastForest"; | ||
string Trainer = "FastForest"; | ||
string TrainerOptions = null; | ||
bool IsCalibrated = false; | ||
|
||
string ExpectedOutputPerInstance= @"// Expected output: | ||
// Label: True, Prediction: True | ||
// Label: False, Prediction: False | ||
// Label: True, Prediction: True | ||
// Label: True, Prediction: True | ||
// Label: False, Prediction: False"; | ||
|
||
string ExpectedOutput = @"// Expected output: | ||
// Accuracy: 0.74 | ||
// AUC: 0.83 | ||
// F1 Score: 0.74 | ||
// Negative Precision: 0.78 | ||
// Negative Recall: 0.71 | ||
// Positive Precision: 0.71 | ||
// Positive Recall: 0.78"; | ||
#> |
112 changes: 112 additions & 0 deletions
112
...mples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/FastForestWithOptions.cs
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
using System; | ||
using System.Collections.Generic; | ||
using System.Linq; | ||
using Microsoft.ML.Data; | ||
using Microsoft.ML.Trainers.FastTree; | ||
|
||
namespace Microsoft.ML.Samples.Dynamic.Trainers.BinaryClassification | ||
{ | ||
public static class FastForestWithOptions | ||
{ | ||
// This example requires installation of additional NuGet package | ||
// <a href="https://www.nuget.org/packages/Microsoft.ML.FastTree/">Microsoft.ML.FastTree</a>. | ||
public static void Example() | ||
{ | ||
// Create a new context for ML.NET operations. It can be used for exception tracking and logging, | ||
// as a catalog of available operations and as the source of randomness. | ||
// Setting the seed to a fixed number in this example to make outputs deterministic. | ||
var mlContext = new MLContext(seed: 0); | ||
|
||
// Create a list of training data points. | ||
var dataPoints = GenerateRandomDataPoints(1000); | ||
|
||
// Convert the list of data points to an IDataView object, which is consumable by ML.NET API. | ||
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints); | ||
|
||
// Define trainer options. | ||
var options = new FastForestBinaryTrainer.Options | ||
{ | ||
// Only use 80% of features to reduce over-fitting. | ||
FeatureFraction = 0.8, | ||
// Create a simpler model by penalizing usage of new features. | ||
FeatureFirstUsePenalty = 0.1, | ||
// Reduce the number of trees to 50. | ||
NumberOfTrees = 50 | ||
}; | ||
|
||
// Define the trainer. | ||
var pipeline = mlContext.BinaryClassification.Trainers.FastForest(options); | ||
|
||
// Train the model. | ||
var model = pipeline.Fit(trainingData); | ||
|
||
// Create testing data. Use different random seed to make it different from training data. | ||
var testData = mlContext.Data.LoadFromEnumerable(GenerateRandomDataPoints(500, seed:123)); | ||
|
||
// Run the model on test data set. | ||
var transformedTestData = model.Transform(testData); | ||
|
||
// Convert IDataView object to a list. | ||
var predictions = mlContext.Data.CreateEnumerable<Prediction>(transformedTestData, reuseRowObject: false).ToList(); | ||
|
||
// Look at 5 predictions | ||
foreach (var p in predictions.Take(5)) | ||
Console.WriteLine($"Label: {p.Label}, Prediction: {p.PredictedLabel}"); | ||
|
||
// Expected output: | ||
// Label: True, Prediction: True | ||
// Label: False, Prediction: False | ||
// Label: True, Prediction: True | ||
// Label: True, Prediction: True | ||
// Label: False, Prediction: True | ||
|
||
// Evaluate the overall metrics | ||
var metrics = mlContext.BinaryClassification.EvaluateNonCalibrated(transformedTestData); | ||
SamplesUtils.ConsoleUtils.PrintMetrics(metrics); | ||
|
||
// Expected output: | ||
// Accuracy: 0.73 | ||
// AUC: 0.81 | ||
// F1 Score: 0.73 | ||
// Negative Precision: 0.77 | ||
// Negative Recall: 0.68 | ||
// Positive Precision: 0.69 | ||
// Positive Recall: 0.78 | ||
} | ||
|
||
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count, int seed=0) | ||
{ | ||
var random = new Random(seed); | ||
float randomFloat() => (float)random.NextDouble(); | ||
for (int i = 0; i < count; i++) | ||
{ | ||
var label = randomFloat() > 0.5f; | ||
yield return new DataPoint | ||
{ | ||
Label = label, | ||
// Create random features that are correlated with the label. | ||
// For data points with false label, the feature values are slightly increased by adding a constant. | ||
Features = Enumerable.Repeat(label, 50).Select(x => x ? randomFloat() : randomFloat() + 0.03f).ToArray() | ||
}; | ||
} | ||
} | ||
|
||
// Example with label and 50 feature values. A data set is a collection of such examples. | ||
private class DataPoint | ||
{ | ||
public bool Label { get; set; } | ||
[VectorType(50)] | ||
public float[] Features { get; set; } | ||
} | ||
|
||
// Class used to capture predictions. | ||
private class Prediction | ||
{ | ||
// Original label. | ||
public bool Label { get; set; } | ||
// Predicted label from the trainer. | ||
public bool PredictedLabel { get; set; } | ||
} | ||
} | ||
} | ||
|
33 changes: 33 additions & 0 deletions
33
...mples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/FastForestWithOptions.tt
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
<#@ include file="TreeSamplesTemplate.ttinclude"#> | ||
|
||
<#+ | ||
string ClassName="FastForestWithOptions"; | ||
string Trainer = "FastForest"; | ||
bool IsCalibrated = false; | ||
|
||
string TrainerOptions = @"FastForestBinaryTrainer.Options | ||
{ | ||
// Only use 80% of features to reduce over-fitting. | ||
FeatureFraction = 0.8, | ||
// Create a simpler model by penalizing usage of new features. | ||
FeatureFirstUsePenalty = 0.1, | ||
// Reduce the number of trees to 50. | ||
NumberOfTrees = 50 | ||
}"; | ||
|
||
string ExpectedOutputPerInstance= @"// Expected output: | ||
// Label: True, Prediction: True | ||
// Label: False, Prediction: False | ||
// Label: True, Prediction: True | ||
// Label: True, Prediction: True | ||
// Label: False, Prediction: True"; | ||
|
||
string ExpectedOutput = @"// Expected output: | ||
// Accuracy: 0.73 | ||
// AUC: 0.81 | ||
// F1 Score: 0.73 | ||
// Negative Precision: 0.77 | ||
// Negative Recall: 0.68 | ||
// Positive Precision: 0.69 | ||
// Positive Recall: 0.78"; | ||
#> |
103 changes: 103 additions & 0 deletions
103
docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/FastTree.cs
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
using System; | ||
using System.Collections.Generic; | ||
using System.Linq; | ||
using Microsoft.ML.Data; | ||
|
||
namespace Microsoft.ML.Samples.Dynamic.Trainers.BinaryClassification | ||
{ | ||
public static class FastTree | ||
{ | ||
// This example requires installation of additional NuGet package | ||
// <a href="https://www.nuget.org/packages/Microsoft.ML.FastTree/">Microsoft.ML.FastTree</a>. | ||
public static void Example() | ||
{ | ||
// Create a new context for ML.NET operations. It can be used for exception tracking and logging, | ||
// as a catalog of available operations and as the source of randomness. | ||
// Setting the seed to a fixed number in this example to make outputs deterministic. | ||
var mlContext = new MLContext(seed: 0); | ||
|
||
// Create a list of training data points. | ||
var dataPoints = GenerateRandomDataPoints(1000); | ||
|
||
// Convert the list of data points to an IDataView object, which is consumable by ML.NET API. | ||
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints); | ||
|
||
// Define the trainer. | ||
var pipeline = mlContext.BinaryClassification.Trainers.FastTree(); | ||
|
||
// Train the model. | ||
var model = pipeline.Fit(trainingData); | ||
|
||
// Create testing data. Use different random seed to make it different from training data. | ||
var testData = mlContext.Data.LoadFromEnumerable(GenerateRandomDataPoints(500, seed:123)); | ||
|
||
// Run the model on test data set. | ||
var transformedTestData = model.Transform(testData); | ||
|
||
// Convert IDataView object to a list. | ||
var predictions = mlContext.Data.CreateEnumerable<Prediction>(transformedTestData, reuseRowObject: false).ToList(); | ||
|
||
// Look at 5 predictions | ||
foreach (var p in predictions.Take(5)) | ||
Console.WriteLine($"Label: {p.Label}, Prediction: {p.PredictedLabel}"); | ||
|
||
// Expected output: | ||
// Label: True, Prediction: True | ||
// Label: False, Prediction: False | ||
// Label: True, Prediction: True | ||
// Label: True, Prediction: True | ||
// Label: False, Prediction: False | ||
|
||
// Evaluate the overall metrics | ||
var metrics = mlContext.BinaryClassification.Evaluate(transformedTestData); | ||
SamplesUtils.ConsoleUtils.PrintMetrics(metrics); | ||
|
||
// Expected output: | ||
// Accuracy: 0.81 | ||
// AUC: 0.91 | ||
// F1 Score: 0.80 | ||
// Negative Precision: 0.82 | ||
// Negative Recall: 0.80 | ||
// Positive Precision: 0.79 | ||
// Positive Recall: 0.81 | ||
// Log Loss: 0.59 | ||
// Log Loss Reduction: 41.04 | ||
// Entropy: 1.00 | ||
} | ||
|
||
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count, int seed=0) | ||
{ | ||
var random = new Random(seed); | ||
float randomFloat() => (float)random.NextDouble(); | ||
for (int i = 0; i < count; i++) | ||
{ | ||
var label = randomFloat() > 0.5f; | ||
yield return new DataPoint | ||
{ | ||
Label = label, | ||
// Create random features that are correlated with the label. | ||
// For data points with false label, the feature values are slightly increased by adding a constant. | ||
Features = Enumerable.Repeat(label, 50).Select(x => x ? randomFloat() : randomFloat() + 0.03f).ToArray() | ||
}; | ||
} | ||
} | ||
|
||
// Example with label and 50 feature values. A data set is a collection of such examples. | ||
private class DataPoint | ||
{ | ||
public bool Label { get; set; } | ||
[VectorType(50)] | ||
public float[] Features { get; set; } | ||
} | ||
|
||
// Class used to capture predictions. | ||
private class Prediction | ||
{ | ||
// Original label. | ||
public bool Label { get; set; } | ||
// Predicted label from the trainer. | ||
public bool PredictedLabel { get; set; } | ||
} | ||
} | ||
} | ||
|
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Is it possible to execute those
Example()
s in a test? Just want to make sure they are always executable. #ResolvedThere was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Good idea. I'll add tests in a separate PR.
In reply to: 267441145 [](ancestors = 267441145)