-
Notifications
You must be signed in to change notification settings - Fork 1.9k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add AutoMLExperiment example doc (#6594)
* add AutoMLExperiment example doc * Update AutoMLExperiment.cs * fix formatting
- Loading branch information
1 parent
6002aa8
commit 7f94445
Showing
3 changed files
with
156 additions
and
0 deletions.
There are no files selected for viewing
144 changes: 144 additions & 0 deletions
144
docs/samples/Microsoft.ML.AutoML.Samples/AutoMLExperiment.cs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
using System; | ||
using System.Collections.Generic; | ||
using System.Linq; | ||
using System.Text; | ||
using System.Threading.Tasks; | ||
using Microsoft.ML.Data; | ||
|
||
namespace Microsoft.ML.AutoML.Samples | ||
{ | ||
public static class AutoMLExperiment | ||
{ | ||
public static async Task RunAsync() | ||
{ | ||
var seed = 0; | ||
|
||
// Create a new context for ML.NET operations. It can be used for | ||
// exception tracking and logging, as a catalog of available operations | ||
// and as the source of randomness. Setting the seed to a fixed number | ||
// in this example to make outputs deterministic. | ||
var context = new MLContext(seed); | ||
|
||
// Create a list of training data points and convert it to IDataView. | ||
var data = GenerateRandomBinaryClassificationDataPoints(100, seed); | ||
var dataView = context.Data.LoadFromEnumerable(data); | ||
|
||
var trainTestSplit = context.Data.TrainTestSplit(dataView); | ||
|
||
// Define the sweepable pipeline using predefined binary trainers and search space. | ||
var pipeline = context.Auto().BinaryClassification(labelColumnName: "Label", featureColumnName: "Features"); | ||
|
||
// Create an AutoML experiment | ||
var experiment = context.Auto().CreateExperiment(); | ||
|
||
// Redirect AutoML log to console | ||
context.Log += (object o, LoggingEventArgs e) => | ||
{ | ||
if (e.Source == nameof(AutoMLExperiment) && e.Kind > Runtime.ChannelMessageKind.Trace) | ||
{ | ||
Console.WriteLine(e.RawMessage); | ||
} | ||
}; | ||
|
||
// Config experiment to optimize "Accuracy" metric on given dataset. | ||
// This experiment will run hyper-parameter optimization on given pipeline | ||
experiment.SetPipeline(pipeline) | ||
.SetDataset(trainTestSplit.TrainSet, fold: 5) // use 5-fold cross validation to evaluate each trial | ||
.SetBinaryClassificationMetric(BinaryClassificationMetric.Accuracy, "Label") | ||
.SetMaxModelToExplore(100); // explore 100 trials | ||
|
||
// start automl experiment | ||
var result = await experiment.RunAsync(); | ||
|
||
// Expected output samples during training: | ||
// Update Running Trial - Id: 0 | ||
// Update Completed Trial - Id: 0 - Metric: 0.5536912515402218 - Pipeline: FastTreeBinary - Duration: 595 - Peak CPU: 0.00 % -Peak Memory in MB: 35.81 | ||
// Update Best Trial - Id: 0 - Metric: 0.5536912515402218 - Pipeline: FastTreeBinary | ||
|
||
// evaluate test dataset on best model. | ||
var bestModel = result.Model; | ||
var eval = bestModel.Transform(trainTestSplit.TestSet); | ||
var metrics = context.BinaryClassification.Evaluate(eval); | ||
|
||
PrintMetrics(metrics); | ||
|
||
// Expected output: | ||
// Accuracy: 0.67 | ||
// AUC: 0.75 | ||
// F1 Score: 0.33 | ||
// Negative Precision: 0.88 | ||
// Negative Recall: 0.70 | ||
// Positive Precision: 0.25 | ||
// Positive Recall: 0.50 | ||
|
||
// TEST POSITIVE RATIO: 0.1667(2.0 / (2.0 + 10.0)) | ||
// Confusion table | ||
// ||====================== | ||
// PREDICTED || positive | negative | Recall | ||
// TRUTH ||====================== | ||
// positive || 1 | 1 | 0.5000 | ||
// negative || 3 | 7 | 0.7000 | ||
// ||====================== | ||
// Precision || 0.2500 | 0.8750 | | ||
} | ||
|
||
private static IEnumerable<BinaryClassificationDataPoint> GenerateRandomBinaryClassificationDataPoints(int count, | ||
int seed = 0) | ||
|
||
{ | ||
var random = new Random(seed); | ||
float randomFloat() => (float)random.NextDouble(); | ||
for (int i = 0; i < count; i++) | ||
{ | ||
var label = randomFloat() > 0.5f; | ||
yield return new BinaryClassificationDataPoint | ||
{ | ||
Label = label, | ||
// Create random features that are correlated with the label. | ||
// For data points with false label, the feature values are | ||
// slightly increased by adding a constant. | ||
Features = Enumerable.Repeat(label, 50) | ||
.Select(x => x ? randomFloat() : randomFloat() + | ||
0.1f).ToArray() | ||
|
||
}; | ||
} | ||
} | ||
|
||
// Example with label and 50 feature values. A data set is a collection of | ||
// such examples. | ||
private class BinaryClassificationDataPoint | ||
{ | ||
public bool Label { get; set; } | ||
|
||
[VectorType(50)] | ||
public float[] Features { get; set; } | ||
} | ||
|
||
// Class used to capture predictions. | ||
private class Prediction | ||
{ | ||
// Original label. | ||
public bool Label { get; set; } | ||
// Predicted label from the trainer. | ||
public bool PredictedLabel { get; set; } | ||
} | ||
|
||
// Pretty-print BinaryClassificationMetrics objects. | ||
private static void PrintMetrics(BinaryClassificationMetrics metrics) | ||
{ | ||
Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}"); | ||
Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}"); | ||
Console.WriteLine($"F1 Score: {metrics.F1Score:F2}"); | ||
Console.WriteLine($"Negative Precision: " + | ||
$"{metrics.NegativePrecision:F2}"); | ||
|
||
Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}"); | ||
Console.WriteLine($"Positive Precision: " + | ||
$"{metrics.PositivePrecision:F2}"); | ||
|
||
Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n"); | ||
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable()); | ||
} | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters