Skip to content

feat: add solutions to lc problem: No.3034 #2369

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -53,52 +53,47 @@

## 解法

### 方法一
### 方法一:枚举

我们可以枚举数组 `nums` 的所有长度为 $m + 1$ 的子数组,然后判断是否满足模式数组 `pattern`,如果满足则答案加一。

时间复杂度 $O(n \times m)$,其中 $n$ 和 $m$ 分别是数组 `nums` 和 `pattern` 的长度。空间复杂度 $O(1)$。

<!-- tabs:start -->

```python
class Solution:
def countMatchingSubarrays(self, nums: List[int], pattern: List[int]) -> int:
n = len(nums)
m = len(pattern)
count = 0
for i in range(n - m):
flag = True
for j in range(m):
if (
(pattern[j] == 1 and nums[i + j + 1] <= nums[i + j])
or (pattern[j] == 0 and nums[i + j + 1] != nums[i + j])
or (pattern[j] == -1 and nums[i + j + 1] >= nums[i + j])
):
flag = False
break
if flag:
count += 1
return count
def f(a: int, b: int) -> int:
return 0 if a == b else (1 if a < b else -1)

ans = 0
for i in range(len(nums) - len(pattern)):
ans += all(
f(nums[i + k], nums[i + k + 1]) == p for k, p in enumerate(pattern)
)
return ans
```

```java
class Solution {
public int countMatchingSubarrays(int[] nums, int[] pattern) {
int n = nums.length;
int m = pattern.length;
int count = 0;
for (int i = 0; i <= n - m - 1; i++) {
boolean flag = true;
for (int j = 0; j < m; j++) {
if ((pattern[j] == 1 && nums[i + j + 1] <= nums[i + j]) ||
(pattern[j] == 0 && nums[i + j + 1] != nums[i + j]) ||
(pattern[j] == -1 && nums[i + j + 1] >= nums[i + j])) {
flag = false;
break;
int n = nums.length, m = pattern.length;
int ans = 0;
for (int i = 0; i < n - m; ++i) {
int ok = 1;
for (int k = 0; k < m && ok == 1; ++k) {
if (f(nums[i + k], nums[i + k + 1]) != pattern[k]) {
ok = 0;
}
}
if (flag) {
count++;
}
ans += ok;
}
return count;
return ans;
}

private int f(int a, int b) {
return a == b ? 0 : (a < b ? 1 : -1);
}
}
```
Expand All @@ -107,71 +102,89 @@ class Solution {
class Solution {
public:
int countMatchingSubarrays(vector<int>& nums, vector<int>& pattern) {
int n = nums.size();
int m = pattern.size();
int c = 0;
for (int i = 0; i <= n - m - 1; i++) {
bool flag = true;
for (int j = 0; j < m; j++) {
if ((pattern[j] == 1 && nums[i + j + 1] <= nums[i + j]) || (pattern[j] == 0 && nums[i + j + 1] != nums[i + j]) || (pattern[j] == -1 && nums[i + j + 1] >= nums[i + j])) {
flag = false;
break;
int n = nums.size(), m = pattern.size();
int ans = 0;
auto f = [](int a, int b) {
return a == b ? 0 : (a < b ? 1 : -1);
};
for (int i = 0; i < n - m; ++i) {
int ok = 1;
for (int k = 0; k < m && ok == 1; ++k) {
if (f(nums[i + k], nums[i + k + 1]) != pattern[k]) {
ok = 0;
}
}
if (flag) {
c++;
}
ans += ok;
}
return c;
return ans;
}
};
```

```go
func countMatchingSubarrays(nums []int, pattern []int) int {
n := len(nums)
m := len(pattern)
count := 0
for i := 0; i <= n-m-1; i++ {
flag := true
for j := 0; j < m; j++ {
if (pattern[j] == 1 && nums[i+j+1] <= nums[i+j]) ||
(pattern[j] == 0 && nums[i+j+1] != nums[i+j]) ||
(pattern[j] == -1 && nums[i+j+1] >= nums[i+j]) {
flag = false
break
}
func countMatchingSubarrays(nums []int, pattern []int) (ans int) {
f := func(a, b int) int {
if a == b {
return 0
}
if flag {
count++
if a < b {
return 1
}
return -1
}
n, m := len(nums), len(pattern)
for i := 0; i < n-m; i++ {
ok := 1
for k := 0; k < m && ok == 1; k++ {
if f(nums[i+k], nums[i+k+1]) != pattern[k] {
ok = 0
}
}
ans += ok
}
return count
return
}
```

```ts
function countMatchingSubarrays(nums: number[], pattern: number[]): number {
const n: number = nums.length;
const m: number = pattern.length;
let count: number = 0;
for (let i = 0; i <= n - m - 1; i++) {
let flag: boolean = true;
for (let j = 0; j < m; j++) {
if (
(pattern[j] === 1 && nums[i + j + 1] <= nums[i + j]) ||
(pattern[j] === 0 && nums[i + j + 1] !== nums[i + j]) ||
(pattern[j] === -1 && nums[i + j + 1] >= nums[i + j])
) {
flag = false;
break;
const f = (a: number, b: number) => (a === b ? 0 : a < b ? 1 : -1);
const n = nums.length;
const m = pattern.length;
let ans = 0;
for (let i = 0; i < n - m; ++i) {
let ok = 1;
for (let k = 0; k < m && ok; ++k) {
if (f(nums[i + k], nums[i + k + 1]) !== pattern[k]) {
ok = 0;
}
}
if (flag) {
count++;
ans += ok;
}
return ans;
}
```

```cs
public class Solution {
public int CountMatchingSubarrays(int[] nums, int[] pattern) {
int n = nums.Length, m = pattern.Length;
int ans = 0;
for (int i = 0; i < n - m; ++i) {
int ok = 1;
for (int k = 0; k < m && ok == 1; ++k) {
if (f(nums[i + k], nums[i + k + 1]) != pattern[k]) {
ok = 0;
}
}
ans += ok;
}
return ans;
}

private int f(int a, int b) {
return a == b ? 0 : (a < b ? 1 : -1);
}
return count;
}
```

Expand Down
Loading