Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add TensorFlow tutorials notebooks. #20

Merged
merged 14 commits into from
Dec 28, 2015
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
Break up deep learning section into subsections.
Add subsections for TensorFlow, Theano, and Misc (currently contains Caffe).
  • Loading branch information
donnemartin committed Dec 28, 2015
commit 1e633218e04648f60379e9671b3b19c41ae66c94
44 changes: 33 additions & 11 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -85,20 +85,42 @@ IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and b

IPython Notebook(s) demonstrating deep learning functionality.

<br/>
<p align="center">
<img src="https://avatars0.githubusercontent.com/u/15658638?v=3&s=100">
</p>

### tensor-flow-exercises

| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [tsf-not-mnist](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/1_notmnist.ipynb) | Learn simple data curation by creating a pickle with formatted datasets for training, development and testing in TensorFlow. |
| [tsf-fully-connected](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/2_fullyconnected.ipynb) | Progressively train deeper and more accurate models using logistic regression and neural networks in TensorFlow. |
| [tsf-regularization](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/3_regularization.ipynb) | Explore regularization techniques by training fully connected networks to classify notMNIST characters in TensorFlow. |
| [tsf-convolutions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/4_convolutions.ipynb) | Create convolutional neural networks in TensorFlow. |
| [tsf-word2vec](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/5_word2vec.ipynb) | Train a skip-gram model over Text8 data in TensorFlow. |
| [tsf-lstm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/6_lstm.ipynb) | Train a LSTM character model over Text8 data in TensorFlow. |
| [theano-intro](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/intro_theano/intro_theano.ipynb) | Intro to Theano, which allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation. |
| [theano-scan](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/scan_tutorial/scan_tutorial.ipynb) | Learn scans, a mechanism to perform loops in a Theano graph. |
| [theano-logistic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/intro_theano/logistic_regression.ipynb) | Implement logistic regression in Theano. |
| [theano-rnn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/rnn_tutorial/simple_rnn.ipynb) | Implement recurrent neural networks in Theano. |
| [theano-mlp](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/theano_mlp/theano_mlp.ipynb) | Implement multilayer perceptrons in Theano. |
| [deep-dream](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/deep-dream/dream.ipynb) | Caffe-based computer vision program which uses a convolutional neural network to find and enhance patterns in images. |
| [tsf-fully-connected](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/2_fullyconnected.ipynb) | Progressively train deeper and more accurate models using logistic regression and neural networks in TensorFlow. |
| [tsf-regularization](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/3_regularization.ipynb) | Explore regularization techniques by training fully connected networks to classify notMNIST characters in TensorFlow. |
| [tsf-convolutions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/4_convolutions.ipynb) | Create convolutional neural networks in TensorFlow. |
| [tsf-word2vec](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/5_word2vec.ipynb) | Train a skip-gram model over Text8 data in TensorFlow. |
| [tsf-lstm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/6_lstm.ipynb) | Train a LSTM character model over Text8 data in TensorFlow. |

<br/>
<p align="center">
<img src="http://www.deeplearning.net/software/theano/_static/theano_logo_allblue_200x46.png">
</p>

### theano-tutorials

| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [theano-intro](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/intro_theano/intro_theano.ipynb) | Intro to Theano, which allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation. |
| [theano-scan](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/scan_tutorial/scan_tutorial.ipynb) | Learn scans, a mechanism to perform loops in a Theano graph. |
| [theano-logistic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/intro_theano/logistic_regression.ipynb) | Implement logistic regression in Theano. |
| [theano-rnn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/rnn_tutorial/simple_rnn.ipynb) | Implement recurrent neural networks in Theano. |
| [theano-mlp](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/theano_mlp/theano_mlp.ipynb) | Implement multilayer perceptrons in Theano. |

### deep-learning-misc

| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [deep-dream](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/deep-dream/dream.ipynb) | Caffe-based computer vision program which uses a convolutional neural network to find and enhance patterns in images. |

<br/>
<p align="center">
Expand Down
Binary file added images/deep.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added images/tensorflow.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added images/theano.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.