Skip to content

A PyTorch library that replaces standard replay buffers with a learnable memory system.

License

Notifications You must be signed in to change notification settings

domezsolt/hippotorch

Repository files navigation

hippotorch

PyPI Linux CI Windows CI

Differentiable episodic memory for RL. Retrieves what matters. Forgets what doesn't.

hippotorch is a PyTorch library that replaces standard replay buffers with a learnable memory system. It uses reward-aware contrastive learning to organize experiences and hybrid sampling to retrieve them—solving the temporal credit assignment problem in sparse-reward, long-horizon tasks.

Install: pip install hippotorch


Key Hyperparameters

Parameter Default Guidance
mixture_ratio 0.5 Start low (0.2), ramp to 0.5 after warmup
momentum 0.995 Higher = more stable keys, slower adaptation
temperature 0.07 Lower = sharper retrieval (try 0.05 for sparse rewards)
reward_weight 0.5 Higher = clusters by reward; lower = clusters by time

When to Use (and When Not To)

Hippotorch adds overhead. Use it where episodic structure matters.

Scenario Benefit Recommendation
Sparse rewards (Montezuma, long corridors) ✅ High Use hippotorch—retrieval surfaces rare successes
Partial observability (POMDPs, visual RL) ✅ High Use hippotorch—pattern completion reconstructs context
Long-horizon tasks (100+ steps to goal) ✅ High Use hippotorch—bridges temporal credit gap
Curriculum / transfer learning ✅ High Use hippotorch—retains skills across task stages
Dense rewards, full observability ⚠️ Low Use standard replay—uniform sampling is sufficient
Short episodes (<20 steps) ⚠️ Low Use standard replay—no retrieval advantage

Rule of Thumb

If your agent "forgets" how to solve early tasks, or struggles to connect actions to delayed rewards, hippotorch can help. If training already converges well with a standard buffer, you don't need it.


Installation

pip install hippotorch

# Optional: Fast retrieval for large memories (1M+ episodes)
pip install faiss-gpu

Requirements: Python ≥3.9, PyTorch ≥2.0


Quickstart

Create a dual encoder + memory store, attach a consolidator, and use the hybrid replay buffer.

import torch
from hippotorch import Episode, DualEncoder, MemoryStore, Consolidator, HippocampalReplayBuffer

state_dim, action_dim = 4, 1
input_dim = state_dim + action_dim + 1  # +1 for reward

# 1) Encoder and memory
encoder = DualEncoder(input_dim=input_dim, embed_dim=128, momentum=0.995)
memory = MemoryStore(embed_dim=128, capacity=50_000)

# 2) Reward-aware consolidator (sleep phase optimizer)
consolidator = Consolidator(encoder, temperature=0.07, reward_weight=0.5)

# 3) Hybrid replay buffer (semantic + uniform)
buffer = HippocampalReplayBuffer(memory=memory, encoder=encoder, mixture_ratio=0.3,
                                 consolidator=consolidator)

# 4) Record an episode (toy tensors)
T = 32
states = torch.randn(T, state_dim)
actions = torch.randn(T, action_dim)
rewards = torch.randn(T)
dones = torch.zeros(T, dtype=torch.bool)
episode = Episode(states=states, actions=actions, rewards=rewards, dones=dones)
buffer.add_episode(episode)

# 5) Sample with semantic + uniform mixing
query_state = torch.cat([states[0], torch.zeros(action_dim), rewards[0].unsqueeze(0)])
batch = buffer.sample(batch_size=64, query_state=query_state, top_k=5)
agent.update(batch)

# 6) Periodic consolidation ("sleep")
metrics = buffer.consolidate(steps=50, batch_size=64, report_quality=True)
print(metrics)

SB3 users can keep their rollout API unchanged with the adapter:

from hippotorch import SB3ReplayBufferWrapper, TerminalSegmenter
sb3_buffer = SB3ReplayBufferWrapper(buffer, segmenter=TerminalSegmenter())
# sb3_buffer.add(obs, next_obs, action, reward, done)

Portable Brains (Hub)

Export a trained memory so another agent can load it instantly:

from hippotorch import (
    DualEncoder,
    HippocampalReplayBuffer,
    MemoryStore,
    push_memory_to_hub,
    load_memory_from_hub,
)

obs_dim = 42
encoder = DualEncoder(input_dim=obs_dim, embed_dim=128)
memory = MemoryStore(embed_dim=128, capacity=2048)

# Push to hub (requires real hub backend, e.g., huggingface_hub)
push_memory_to_hub(memory, repo_id="user/fetch-reach-expert", private=False)

# Later, load
restored = load_memory_from_hub("user/fetch-reach-expert")

# Or operate via the buffer convenience wrappers
buffer = HippocampalReplayBuffer(memory=memory, encoder=encoder)
buffer.save_to_hub("user/fetch-reach-expert")
restored_memory = buffer.load_memory_from_hub("user/fetch-reach-expert")

Note

  • The hub utilities in this repo are minimal stubs for testing. To use the Hub in production, integrate a real backend (e.g., huggingface_hub) by adapting hippotorch.utils.hub.

Quick Experiment Scripts

Convenience scripts in scripts/ run short, repeatable experiments:

  • Rank‑weighted consolidation ablation:
    • bash scripts/run_rank_ablation.sh
  • Consolidation micro‑bench (synthetic):
    • bash scripts/run_consolidation_micro.sh
  • CartPole parity (short run with logging):
    • bash scripts/quick_cartpole.sh
  • Zero‑noise corridor (Amnesiac):
    • bash scripts/corridor_multiseed_zn.sh
    • Faster: SEEDS=2 EPISODES=150 CONS_EVERY=10 CONS_STEPS=50 bash scripts/corridor_multiseed_zn.sh
  • Curriculum corridor (progressively increases length):
    • bash scripts/corridor_curriculum.sh
  • TensorBoard embedding snapshot (PCA):
    • bash scripts/log_tb_embedding.sh then tensorboard --logdir runs/hippo_tb

See docs/benchmarks.md and docs/curriculum.md for details.