Tensorflow implementation of Context-based parking slot detection (IEEE Access)
This implementation is based on https://github.com/wizyoung/YOLOv3_TensorFlow
-
This code should be run only once at the beginning.
-
Download Train Dataset
- link
- Unzip to $your_data_path/train folder
- Download Test Dataset
- link
- Unzip to $your_data_path/test folder
- Data augmentation, create tfrecord and text files
- python prepare_data.py --data_path=$your_data_path
- Download pretrain weight (Updated 2020.10.26)
- link
- Save to 'pre_weight' folder under "context-based detect" folder
-
python train.py --data_path=$your_data_path
-
Trained Weight path
- Weight files of parking context recognizer are saved to 'weight_pcr/YYYYMMDD_HHMM'
- Weight files of parking slot detector fine-tuned for parallel parking slots are saved to 'weight_psd/type_0/YYYYMMDD_HHMM'
- Weight files of parking slot detector fine-tuned for perpendicular parking slots are saved to 'weight_psd/type_1/YYYYMMDD_HHMM'
- Weight files of parking slot detector fine-tuned for diagonal parking slots are saved to 'weight_psd/type_2/YYYYMMDD_HHMM'
- Download trained weight
- link
- Unzip under main path (locate "weight_pcr" and "weight_psd" under "context-based detect" folder)
- Evaluate
- python test.py --data_path=$your_test_path
- Evaluate
- python test.py --data_path=$your_test_path --pcr_test_weight='weight_pcr/YYYYMMDD_HHMM/cp-0050.ckpt' --psd_test_weight_type0='weight_psd/type_0/YYYYMMDD_HHMM' --psd_test_weight_type1='weight_psd/type_1/YYYYMMDD_HHMM' --psd_test_weight_type2='weight_psd/type_2/YYYYMMDD_HHMM'
If you use this code for your research, please cite the following work:
@ARTICLE{9199853,
author={Do, Hoseok and Choi, Jin Young},
journal={IEEE Access},
title={Context-Based Parking Slot Detection With a Realistic Dataset},
year={2020},
volume={8},
number={},
pages={171551-171559},
doi={10.1109/ACCESS.2020.3024668}}
'''