Effortlessly generate JIRA issues such as stories, bugs, epics, spikes, and tasks employing predefined templates and optional AI-boosted descriptions.
mkdir -p ~/.bashrc.d
cat <<EOF > ~/.bashrc.d/jira.sh
export JIRA_JPAT="your_jira_personal_access_token"
export JIRA_AI_PROVIDER=openai
export JIRA_AI_API_KEY=sk-...
export JIRA_AI_MODEL="gpt-4o-mini"
export JIRA_URL="https://issues.redhat.com"
export JIRA_PROJECT_KEY="AAP"
export JIRA_AFFECTS_VERSION="aa-latest"
export JIRA_COMPONENT_NAME="analytics-hcc-service"
export JIRA_PRIORITY="Normal"
export JIRA_BOARD_ID=21125
export JIRA_EPIC_FIELD="customfield_12311140"
export JIRA_ACCEPTANCE_CRITERIA_FIELD="customfield_12315940"
export JIRA_BLOCKED_FIELD="customfield_12316543"
export JIRA_BLOCKED_REASON_FIELD="customfield_12316544"
export JIRA_STORY_POINTS_FIELD="customfield_12310243"
export JIRA_SPRINT_FIELD="customfield_12310940"
export JIRA_VOSK_MODEL="/home/daoneill/.vosk/vosk-model-small-en-us-0.15"
# Enable autocomplete
eval "$(/usr/local/bin/rh-issue --_completion | sed 's/rh_jira.py/rh-issue/')"
EOF
source ~/.bashrc.d/jira.sh
chmod +x jira_creator/rh-issue-wrapper.sh
sudo ln -s $(pwd)/jira_creator/rh-issue-wrapper.sh /usr/local/bin/rh-issue
rh-issue create story "Improve onboarding experience"
This document describes the various commands that can be used to manage JIRA issues from the command-line.
The search
command allows you to find issues using a JIRA Query Language (JQL) expression.
Example:
search "project = 'PROJ' AND status = 'In Progress'"
The list-issues
command retrieves a list of all issues in a specific project, with options to filter by component, assignee, status, summary and reporter. You can customize the output by specifying the columns to show and the order to sort them.
Example:
list-issues --project 'PROJ' --status 'In Progress' --columns 'key, summary, status' --sort 'key'
The create-issue
command is used to create a new issue. You can specify the type of the issue (bug, story, epic, task, spike) and its summary. The --edit
flag allows you to modify the issue before it's created, while the --dry-run
flag simulates the issue creation without actually doing it.
Example:
create-issue --type bug --summary "This is a test bug"
The edit-issue
command allows you to modify an existing issue. The issue to edit is specified by its key. The --no-ai
flag can be used to disable AI assistance during editing.
Example:
edit-issue --issue_key PROJ-123
The set-priority
command allows you to change the priority of an issue. You can specify the issue by its key and set the priority to normal, major or critical.
Example:
set-priority --issue_key PROJ-123 --priority major
The set-story-epic
command links a story issue to an epic issue. Both the story issue and the epic issue are specified by their keys.
Example:
set-story-epic --issue_key PROJ-123 --epic_key PROJ-124
The block
command allows you to block an issue, specifying the reason for the block. The unblock
command removes the block from an issue. Both commands require the key of the issue.
Example:
block --issue_key PROJ-123 --reason "Waiting for PROJ-124"
unblock --issue_key PROJ-123
And many more...
Review each command and arguments to understand the depth of each command, and how it can be used to manage Jira issues effectively. It is recommended to always use the --dry-run
flag when unsure about a command's effect.
You have the option to integrate different AI providers by modifying JIRA_AI_PROVIDER
. Ollama can be employed to manage various models.
mkdir -vp ~/.ollama-models
docker run -d -v ~/.ollama-models:/root/.ollama -p 11434:11434 ollama/ollama
export JIRA_AI_PROVIDER=openai
export JIRA_AI_API_KEY=sk-...
export JIRA_AI_MODEL=gpt-4 # Optional
docker compose exec ollama ollama pull LLama3
export JIRA_AI_PROVIDER=LLama3
export JIRA_AI_URL=http://localhost:11434/api/generate
export JIRA_AI_MODEL=LLama3
docker compose exec ollama ollama pull deepseek-r1:7b
export JIRA_AI_PROVIDER=deepseek
export JIRA_AI_URL=http://localhost:11434/api/generate
export JIRA_AI_MODEL=http://localhost:11434/api/generate
pip install gpt4all
export JIRA_AI_PROVIDER=gpt4all
# WIP
export JIRA_AI_PROVIDER=instructlab
export JIRA_AI_URL=http://localhost:11434/api/generate
export JIRA_AI_MODEL=instructlab
# WIP
export JIRA_AI_PROVIDER=bart
export JIRA_AI_URL=http://localhost:8000/bart
# WIP
export JIRA_AI_PROVIDER=noop
pipenv install --dev
make test
make lint
make super-lint
- The tool gathers field definitions from
.tmpl
files located undertemplates/
- Employs
TemplateLoader
for generating Markdown descriptions - Optionally applies AI for enhancing readability and structure
- Sends to JIRA through REST API (or performs a dry run)
This project falls under the terms of the Apache License.