Is the validation target for the unsupervised part the test set ? #4
Open
Description
Line 181 in 3039645
def linear_probing(self, val_dataloader, eval_dataloader):
self.model.eval()
(train_x, train_y), (test_x, test_y) = self.get_latent_vector(val_dataloader), \
self.get_latent_vector(eval_dataloader)
pca = PCA(n_components=50)
train_x = pca.fit_transform(train_x)
test_x = pca.transform(test_x)
model = KNeighborsClassifier()
model.fit(train_x, train_y)
out = model.predict(test_x)
acc, mf1 = accuracy_score(test_y, out), f1_score(test_y, out, average='macro')
self.model.train()
return acc, mf1
I was wondering if this validation method is using the same eval test set that is used for fine tuning?
Metadata
Assignees
Labels
No labels