python setup.py install
python -m stax [-h] table column frequency output
Argument | Definition |
---|---|
table |
The csv file with the time series data |
column |
Which column to forecast |
frequency |
Use daily or monthly data |
output |
Full directory for JSON results |
python -m stax ./data/airline-passengers.csv Passengers monthly airline-passengers-result.json
You can call python -m stax.plot
on a json result file to create matplotlib visualizations.
{
"meta": {
"train": {
"values": [
112,
...
407
]
},
"test": {
"values": [
362,
405,
...
432
]
}
},
"models": {
"ARIMA": {
"model": "ARIMA",
"test_predictions": [
363.2909859213608,
369.8852769813491,
...
484.92738208204236
],
"test_confidence_intervals": [
[
323.8192989290492,
402.7626729136724
],
...
],
"test_mean_absoloute_percent_error": 0.0949
},
"ExponentialSmoothing": {
"model": "TripleExponentialSmoothing",
"test_predictions": [
343.11984637306654,
...
],
"test_confidence_intervals": null,
"test_mean_absoloute_percent_error": 0.0786
}
}
}
- Run the redis server
- Spin up redis queue workers
- Start the webhook server