Interactive visualisation of model predictions with optional uncertainty and validation overlays.
Supports 1D, 2D, and 3D views using Plotly.
- input_df (CSV) – rows are evaluation points; columns are continuous input variables (e.g.,
x,y,z). - pred_df (CSV) – same number of rows as
input_df; columns are output predictions (e.g.,c,c2). - unc_df (optional, CSV) – same rows/columns as
pred_df; predictive 1σ. - val_df (optional, CSV) – scattered validation points; must include the selected inputs and the selected output column.
- val_err_df (optional, CSV) – scattered validation errors; must include the selected inputs and an error column named
<output>_err(percentage) or<output>.
python -m venv .venv
source .venv/bin/activate # (Windows: .venv\\Scripts\\activate)
pip install -r requirements.txt
streamlit run app.py