Skip to content

devhitfrank/cudaica

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

#CUDAICA

##What is CUDAICA? Is an implementation of Infomax ICA made on CUDA.

##What is Infomax ICA? Infomax ICA is an algorithm to perform Independent Component Analysis

##Requirements

###Hardware

  • A CUDA enabled GPU
  • Enough RAM!

###Software

  • Cuda Toolkit: 4.0+ required
  • GCC
  • Autotools, Autoconf and M4
  • GFORTRAN compiler
  • BLAS library

##Installation

  1. Download the source code
  2. Configure
  3. Make

###Advanced configurations options Additionaly, when configuring the source code, the following options can be passed to the configure script:

  • –-with-cuda: Use specified path as cuda base directory. Example: –with-cuda=/opt/cuda. Default: /usr/local/cuda.
  • –-with-cuda-arch: Generate cudaica for the specified cuda compute capability. Options are:
    • 11 = Compute Capability 1.1
    • 12 = Compute Capability 1.2
    • 13 = Compute Capability 1.3
    • 20 = Compute Capability 2.0 (default)
    • 21 = Compute Capability 2.1
    • 30 = Compute Capability 3.0
    • 32 = Compute Capability 3.2
    • 35 = Compute Capability 3.5
    • 50 = Compute Capability 5.0
    • 52 = Compute Capability 5.2
    • 53 = Compute Capability 5.3
  • –-with-double: Enables or disables double precision floating point. Options are:
    • yes (default)
    • no
  • –-enable-debug: Enable debugging features and use specified level. Generates executable with debugging symbols and nvcc shows extra information. Example –enable-debug=2.
    1. Function calls.
    2. Memory alloc information.
    3. Function calls inside iterations.
  • --enable-python: Enables python bindings (default=disabled)

More information LIAA website

Cite

Raimondo, Federico, Juan E. Kamienkowski, Mariano Sigman, and Diego Fernandez Slezak. “CUDAICA: GPU Optimization of Infomax-ICA EEG Analysis.” Computational Intelligence and Neuroscience 2012 (2012).

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Cuda 50.8%
  • C 25.3%
  • M4 13.2%
  • MATLAB 7.3%
  • Python 1.8%
  • Makefile 1.5%
  • Shell 0.1%