PyTorch implementation of Deep Convolution Network based on EDSR for Compression Artifacts Reduction
- PyTorch
- tqdm
- Pillow
Dataset: DIV 2K train set + ...(custom dataset...)
Batch size: 16
Patch size: 48x48
Optimizer: Adam
Loss: L1 Loss
Input: Compressed Image by JPEG (jpeg_quality: rand(0 to 10)) / RGB
Output: Original Image / RGB
Epoch: 450
python train.py --images_dir [Your training image path] --outputs_dir ./ --jpeg_quality [10 to 100] --batch_size [num] --num_epochs [num]
Pre-trained model was trained using the below arguments.
python train.py --images_dir ../DIV2K_train_HR --outputs_dir ./ --jpeg_quality 10 --batch_size 16 --num_epochs 200
python test.py --weights_path [your trained weight].pth --image_path [your_image] --outputs_dir ./