-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
68 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
import numpy | ||
import PIL | ||
from PIL import Image | ||
import torch | ||
import torchvision | ||
|
||
|
||
class FeatureExtractor(torch.nn.Module): | ||
def __init__(self): | ||
super(FeatureExtractor, self).__init__() | ||
tmp = torchvision.models.efficientnet_v2_s(weights="DEFAULT").features | ||
del tmp[7] | ||
del tmp[6] | ||
del tmp[5] | ||
self.features = tmp.cuda().half() | ||
|
||
def forward(self, x): | ||
x = x.cuda().half() / 255.0 | ||
x = (x - 0.5) / 0.25 | ||
return self.features(x) | ||
|
||
|
||
with torch.no_grad(): | ||
net = FeatureExtractor() | ||
|
||
image = PIL.Image.open("/scratchf/DFC2015/BE_ORTHO_27032011_315130_56865.tif") | ||
image = numpy.asarray(image.convert("RGB").copy()) | ||
image = torch.Tensor(image)[0:9920, 0:9920, :].clone() | ||
image = torch.stack([image[:, :, 0], image[:, :, 1], image[:, :, 2]], dim=0) | ||
image = image.unsqueeze(0) | ||
|
||
print("extract data") | ||
allfeatures = torch.zeros(128, 620, 620) | ||
for r in range(10): | ||
for c in range(10): | ||
x = image[:, :, 992 * r : 992 * (r + 1), 992 * c : 992 * (c + 1)] | ||
z = net(x)[0].cpu() | ||
allfeatures[:, 62 * r : 62 * (r + 1), 62 * c : 62 * (c + 1)] = z | ||
|
||
allfeatures = torch.nn.functional.avg_pool2d( | ||
allfeatures.unsqueeze(0), kernel_size=2, stride=2 | ||
) | ||
allfeatures = allfeatures[0] | ||
|
||
print("extract stats") | ||
allfeatures = allfeatures.cuda().half() | ||
|
||
GRAM = torch.nn.functional.softmax(torch.matmul(allfeatures.transpose(0, 1), allfeatures),1) | ||
|
||
del allfeatures | ||
torch.diagonal(GRAM).fill_(-10) | ||
assert GRAM.shape == (310 * 310, 310 * 310) | ||
|
||
maxGRAM, _ = GRAM.max(1) | ||
assert GRAM.shape[0] == 310 * 310 | ||
del GRAM | ||
|
||
seuil = sorted(list(maxGRAM.cpu().numpy())) | ||
seuil = float(seuil[100]) | ||
maxGRAM = maxGRAM.view(310, 310).cpu() | ||
print((maxGRAM < seuil).float().sum()) | ||
|
||
image620 = torch.nn.functional.interpolate(image, size=310, mode="bilinear") | ||
image620 = image620[0] / 255 | ||
torchvision.utils.save_image(image620, "build/image.png") | ||
|
||
image620 *= (maxGRAM <= seuil).float().unsqueeze(0) | ||
torchvision.utils.save_image(image620, "build/amer.png") |