-
Notifications
You must be signed in to change notification settings - Fork 4.5k
Open
Labels
Description
Describe the bug
I am currently not able to run deepspeed latest version (0.16.4) with cuda 12.8 using pytorch 2.7. I am receiving the following error stack:
GPU: 3090 TI FE
[rank0]: RuntimeError: CUDA error: invalid argument
[rank0]: CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
[rank0]: For debugging consider passing CUDA_LAUNCH_BLOCKING=1
[rank0]: Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.
To Reproduce
Model Name: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
Use deepspeed config:
{
"train_batch_size": 1,
"gradient_accumulation_steps": 1,
"optimizer": {
"type": "AdamW",
"params": {
"lr": 2e-5
}
},
"zero_optimization": {
"stage": 2,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"allgather_partitions": true,
"allgather_bucket_size": 2e8,
"overlap_comm": true,
"reduce_scatter": true,
"reduce_bucket_size": 2e8,
"contiguous_gradients": true
},
"fp16": {
"enabled": true
}
}
Expected behavior
I expect it to be able to run and allow me to train the model without getting CUDA error: invalid argument
ds_report output
[2025-03-18 20:48:02,997] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect)
--------------------------------------------------
DeepSpeed C++/CUDA extension op report
--------------------------------------------------
NOTE: Ops not installed will be just-in-time (JIT) compiled at
runtime if needed. Op compatibility means that your system
meet the required dependencies to JIT install the op.
--------------------------------------------------
JIT compiled ops requires ninja
ninja .................. [OKAY]
--------------------------------------------------
op name ................ installed .. compatible
--------------------------------------------------
async_io ............... [NO] ....... [OKAY]
fused_adam ............. [NO] ....... [OKAY]
cpu_adam ............... [NO] ....... [OKAY]
cpu_adagrad ............ [NO] ....... [OKAY]
cpu_lion ............... [NO] ....... [OKAY]
[WARNING] Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH
evoformer_attn ......... [NO] ....... [NO]
[WARNING] FP Quantizer is using an untested triton version (3.2.0), only 2.3.(0, 1) and 3.0.0 are known to be compatible with these kernels
fp_quantizer ........... [NO] ....... [NO]
fused_lamb ............. [NO] ....... [OKAY]
fused_lion ............. [NO] ....... [OKAY]
gds .................... [NO] ....... [OKAY]
transformer_inference .. [NO] ....... [OKAY]
inference_core_ops ..... [NO] ....... [OKAY]
cutlass_ops ............ [NO] ....... [OKAY]
quantizer .............. [NO] ....... [OKAY]
ragged_device_ops ...... [NO] ....... [OKAY]
ragged_ops ............. [NO] ....... [OKAY]
random_ltd ............. [NO] ....... [OKAY]
[WARNING] sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.7
[WARNING] using untested triton version (3.2.0), only 1.0.0 is known to be compatible
sparse_attn ............ [NO] ....... [NO]
spatial_inference ...... [NO] ....... [OKAY]
transformer ............ [NO] ....... [OKAY]
stochastic_transformer . [NO] ....... [OKAY]
--------------------------------------------------
DeepSpeed general environment info:
torch install path ............... ['/xxxx/lib/python3.12/site-packages/torch']
torch version .................... 2.7.0.dev20250309+cu128
deepspeed install path ........... ['/xxxx/lib/python3.12/site-packages/deepspeed']
deepspeed info ................... 0.16.4, unknown, unknown
torch cuda version ............... 12.8
torch hip version ................ None
nvcc version ..................... 12.8
deepspeed wheel compiled w. ...... torch 0.0, cuda 0.0
shared memory (/dev/shm) size .... 61.66 GB
Screenshots
N/A
System info (please complete the following information):
- OS: Ubuntu 24.10
- GPU count and types: 3090 TI FE 1
- Interconnects : N/A
- Python version: 3.12.7
Launcher context
Are you launching your experiment with the deepspeed
launcher, MPI, or something else? No
Docker context
Are you using a specific docker image that you can share? No
Additional context
N/A