Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion deepnote_toolkit/ocelots/pandas/analyze.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ def _count_unique(column):


def _get_categories(np_array):
pandas_series = pd.Series(np_array.tolist())
pandas_series = pd.Series(np_array)

# special treatment for empty values
num_nans = pandas_series.isna().sum().item()
Expand Down
85 changes: 85 additions & 0 deletions tests/unit/test_analyze_columns_pandas.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@

import numpy as np
import pandas as pd
from trino.types import NamedRowTuple

from deepnote_toolkit.ocelots.constants import DEEPNOTE_INDEX_COLUMN
from deepnote_toolkit.ocelots.pandas.analyze import analyze_columns
Expand Down Expand Up @@ -575,5 +576,89 @@ def test_mixed_column_types(self):
self.assertIsNotNone(col.stats)


class TestAnalyzeColumnsWithTrinoTypes(unittest.TestCase):
def test_analyze_columns_with_named_row_tuple(self):
row1 = NamedRowTuple(
values=[1, "Alice"], names=["id", "name"], types=["integer", "varchar"]
)
row2 = NamedRowTuple(
values=[2, "Bob"], names=["id", "name"], types=["integer", "varchar"]
)
row3 = NamedRowTuple(
values=[1, "Alice"], names=["id", "name"], types=["integer", "varchar"]
)

np_array = np.empty(3, dtype=object)
np_array[0] = row1
np_array[1] = row2
np_array[2] = row3

df = pd.DataFrame({"col1": np_array})
result = analyze_columns(df)

self.assertEqual(len(result), 1)
self.assertEqual(result[0].name, "col1")
self.assertEqual(result[0].dtype, "object")
self.assertIsNotNone(result[0].stats)
self.assertIsNotNone(result[0].stats.categories)
self.assertIsInstance(result[0].stats.categories, list)
self.assertGreater(len(result[0].stats.categories), 0)
for category in result[0].stats.categories:
self.assertIn("name", category)
self.assertIn("count", category)

def test_analyze_columns_with_named_row_tuple_and_missing_values(self):
row1 = NamedRowTuple(
values=[1, "Alice"], names=["id", "name"], types=["integer", "varchar"]
)
row2 = NamedRowTuple(
values=[2, "Bob"], names=["id", "name"], types=["integer", "varchar"]
)

np_array = np.empty(4, dtype=object)
np_array[0] = row1
np_array[1] = row2
np_array[2] = None
np_array[3] = row1

df = pd.DataFrame({"col1": np_array})
result = analyze_columns(df)

self.assertEqual(len(result), 1)
self.assertIsNotNone(result[0].stats)
self.assertIsNotNone(result[0].stats.categories)

category_names = [cat["name"] for cat in result[0].stats.categories]
self.assertIn("Missing", category_names)

missing_cat = next(
cat for cat in result[0].stats.categories if cat["name"] == "Missing"
)
self.assertEqual(missing_cat["count"], 1)

def test_analyze_columns_with_many_named_row_tuples(self):
np_array = np.empty(20, dtype=object)
for i in range(10):
row = NamedRowTuple(
values=[i, f"User{i}"],
names=["id", "name"],
types=["integer", "varchar"],
)
np_array[i * 2] = row
np_array[i * 2 + 1] = row

df = pd.DataFrame({"col1": np_array})
result = analyze_columns(df)

self.assertEqual(len(result), 1)
self.assertIsNotNone(result[0].stats)
self.assertIsNotNone(result[0].stats.categories)
self.assertGreaterEqual(len(result[0].stats.categories), 1)
self.assertLessEqual(len(result[0].stats.categories), 3)

has_others = any("others" in cat["name"] for cat in result[0].stats.categories)
self.assertTrue(has_others)


if __name__ == "__main__":
unittest.main()