Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
78 changes: 41 additions & 37 deletions deepmd/pt/train/training.py
Original file line number Diff line number Diff line change
Expand Up @@ -558,46 +558,50 @@ def update_single_finetune_params(
]
self.wrapper.load_state_dict(state_dict)

def single_model_finetune(
_model,
_model_params,
_sample_func,
):
old_type_map, new_type_map = (
_model_params["type_map"],
_model_params["new_type_map"],
)
if isinstance(_model, EnergyModel):
_model.change_out_bias(
_sample_func,
bias_adjust_mode=_model_params.get(
"bias_adjust_mode", "change-by-statistic"
),
origin_type_map=new_type_map,
full_type_map=old_type_map,
)
else:
# need to updated
pass
if finetune_model is not None:

# finetune
if not self.multi_task:
single_model_finetune(
self.model, model_params, self.get_sample_func
)
else:
for model_key in self.model_keys:
if model_key in self.finetune_links:
log.info(
f"Model branch {model_key} will be fine-tuned. This may take a long time..."
)
single_model_finetune(
self.model[model_key],
model_params["model_dict"][model_key],
self.get_sample_func[model_key],
def single_model_finetune(
_model,
_model_params,
_sample_func,
):
old_type_map, new_type_map = (
_model_params["type_map"],
_model_params["new_type_map"],
)
if isinstance(_model, EnergyModel):
_model.change_out_bias(
_sample_func,
bias_adjust_mode=_model_params.get(
"bias_adjust_mode", "change-by-statistic"
),
origin_type_map=new_type_map,
full_type_map=old_type_map,
)
else:
log.info(f"Model branch {model_key} will resume training.")
# need to updated
pass

# finetune
if not self.multi_task:
single_model_finetune(
self.model, model_params, self.get_sample_func
)
else:
for model_key in self.model_keys:
if model_key in self.finetune_links:
log.info(
f"Model branch {model_key} will be fine-tuned. This may take a long time..."
)
single_model_finetune(
self.model[model_key],
model_params["model_dict"][model_key],
self.get_sample_func[model_key],
)
else:
log.info(
f"Model branch {model_key} will resume training."
)

if init_frz_model is not None:
frz_model = torch.jit.load(init_frz_model, map_location=DEVICE)
Expand Down