-
Notifications
You must be signed in to change notification settings - Fork 68
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[tnx] neuron rolling batch test suite
- Loading branch information
1 parent
1038c63
commit 7b48d3d
Showing
5 changed files
with
585 additions
and
30 deletions.
There are no files selected for viewing
160 changes: 160 additions & 0 deletions
160
engines/python/setup/djl_python/tests/neuron_test_scripts/neuron_rb_generator.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
#!/usr/bin/env python | ||
# | ||
# Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file | ||
# except in compliance with the License. A copy of the License is located at | ||
# | ||
# http://aws.amazon.com/apache2.0/ | ||
# | ||
# or in the "LICENSE.txt" file accompanying this file. This file is distributed on an "AS IS" | ||
# BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, express or implied. See the License for | ||
# the specific language governing permissions and limitations under the License. | ||
|
||
from collections import defaultdict | ||
from typing import List, Dict | ||
from dataclasses import dataclass | ||
from djl_python import test_model, Input | ||
from djl_python.request import Request | ||
from djl_python.input_parser import format_input | ||
|
||
|
||
@dataclass | ||
class SimulationSchedule: | ||
prompts: List[str] | ||
params: List[Dict] | ||
reqs_to_prefill: List[int] | ||
wait_steps: List[int] | ||
|
||
|
||
class NeuronRollingBatchGenerator: | ||
|
||
def __init__(self): | ||
self.rolling_batch = None | ||
self._req_id = 0 | ||
# Store the results | ||
self.output_all = defaultdict(list) | ||
self.input_all = {} | ||
self.data_collector = [] | ||
self.responses = [] | ||
|
||
# Status variables | ||
self.input_str = [] | ||
self.params = [] | ||
self.req_ids = [] | ||
|
||
# Spec_dec | ||
self.token_numbers = defaultdict(list) | ||
|
||
def init_neuron_service(self, properties: dict): | ||
from djl_python.transformers_neuronx import TransformersNeuronXService | ||
_service = TransformersNeuronXService() | ||
_service.initialize(properties) | ||
self.rolling_batch = _service.rolling_batch | ||
|
||
def get_req_id(self): | ||
req_id = self._req_id | ||
self._req_id = self._req_id + 1 | ||
return req_id | ||
|
||
def collect_data(self, result): | ||
done_requests_indices = [] | ||
for idx, item in enumerate(result): | ||
if len(self.data_collector) <= idx: | ||
self.data_collector.append(item["data"]) | ||
else: | ||
self.data_collector[idx] += item["data"] | ||
if item['last']: | ||
done_requests_indices.append(idx) | ||
for idx in sorted(done_requests_indices, reverse=True): | ||
value = self.data_collector.pop(idx) | ||
self.responses.append(value) | ||
print(f"\nFinished request: {value}\n") | ||
return done_requests_indices | ||
|
||
def build_request(self, raw_input): | ||
inputs = test_model.create_json_request(raw_input) | ||
parsed_inputs = format_input(inputs) | ||
request = Request(parsed_inputs) | ||
request.id = self.get_req_id() | ||
return request | ||
|
||
def simulator(self, schedule: SimulationSchedule): | ||
assert len(schedule.prompts) == len(schedule.params) | ||
assert len(schedule.reqs_to_prefill) == len(schedule.wait_steps) | ||
zipped_requests = zip(schedule.prompts, schedule.params) | ||
all_requests = [{ | ||
"inputs": prompt, | ||
"parameters": params | ||
} for prompt, params in zipped_requests] | ||
current_requests = [] | ||
new_requests = [] | ||
for batch_size, step in zip(schedule.reqs_to_prefill, | ||
schedule.wait_steps): | ||
for _ in range(batch_size): | ||
request = self.build_request(all_requests.pop(0)) | ||
new_requests = [request] + new_requests | ||
current_requests.append(request) | ||
|
||
for i in range(step): | ||
if len(current_requests) == 0: | ||
break | ||
generated_tokens = self.rolling_batch.inference(new_requests) | ||
new_requests.clear() | ||
finished_indices = self.collect_data(generated_tokens) | ||
for idx in sorted(finished_indices, reverse=True): | ||
current_requests.pop(idx) | ||
while len(current_requests) > 0: | ||
generated_tokens = self.rolling_batch.inference(new_requests) | ||
finished_indices = self.collect_data(generated_tokens) | ||
for idx in sorted(finished_indices, reverse=True): | ||
current_requests.pop(idx) | ||
|
||
def step(self, step=20, input_str_delta=None, params_delta=None): | ||
if input_str_delta: | ||
begin_id = max(self.input_all.keys(), default=0) + 1 | ||
req_ids_delta = list( | ||
range(begin_id, begin_id + len(input_str_delta))) | ||
|
||
self.input_str += input_str_delta | ||
self.params += params_delta | ||
self.req_ids += req_ids_delta | ||
for req_id, input_s, param in zip(req_ids_delta, input_str_delta, | ||
params_delta): | ||
self.input_all[req_id] = (input_s, param) | ||
|
||
iterator = range(step) | ||
for i in iterator: | ||
result = self.rolling_batch.inference(self.input_str, self.params) | ||
for res, req_id in zip(result, self.req_ids): | ||
self.output_all[req_id].append(res['data']) | ||
self.token_numbers[req_id].append(res.get('step_token_num', 1)) | ||
self.req_ids = [ | ||
req_id for req_id, res in zip(self.req_ids, result) | ||
if not res['last'] | ||
] | ||
self.input_str = [ | ||
s for s, res in zip(self.input_str, result) if not res['last'] | ||
] | ||
self.params = [ | ||
p for p, res in zip(self.params, result) if not res['last'] | ||
] | ||
if not self.req_ids: | ||
break | ||
|
||
def is_empty(self): | ||
return not self.req_ids | ||
|
||
def reset(self): | ||
self.data_collector = [] | ||
self.rolling_batch = None | ||
# Store the results | ||
self.output_all = defaultdict(list) | ||
self.input_all = {} | ||
|
||
# Status variables, the remaining | ||
self.input_str = [] | ||
self.params = [] | ||
self.req_ids = [] | ||
|
||
self.token_numbers = defaultdict(list) |
157 changes: 157 additions & 0 deletions
157
engines/python/setup/djl_python/tests/neuron_test_scripts/test_neuron_tnx_rolling_batch.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,157 @@ | ||
#!/usr/bin/env python | ||
# | ||
# Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file | ||
# except in compliance with the License. A copy of the License is located at | ||
# | ||
# http://aws.amazon.com/apache2.0/ | ||
# | ||
# or in the "LICENSE.txt" file accompanying this file. This file is distributed on an "AS IS" | ||
# BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, express or implied. See the License for | ||
# the specific language governing permissions and limitations under the License. | ||
|
||
import unittest | ||
import json | ||
import os | ||
|
||
try: | ||
import transformers_neuronx | ||
from djl_python.transformers_neuronx import TransformersNeuronXService | ||
SKIP_TEST = False | ||
except ImportError: | ||
SKIP_TEST = True | ||
|
||
expected_text_30 = { | ||
"TinyLlama/TinyLlama-1.1B-Chat-v0.6": { | ||
0: | ||
"Hello, my name is [Your Name] and I am a [Your Job Title] at [Your Company Name]. I am interested in learning more about your company'", | ||
1: | ||
'The president of the United States is a man named Donald Trump.\n\n2. The president of the United States is a man named Donald Trump.\n\n3. The president', | ||
2: | ||
'The capital of France is Paris.\n\n2. The capital of the United States is Washington, D.C.\n\n3. The capital of Canada is Ott', | ||
3: | ||
"The future of AI is bright, and it's already here. With the help of AI, we can create more personalized experiences, automate repetitive tasks, and even predict the future.", | ||
} | ||
} | ||
|
||
|
||
@unittest.skipIf(SKIP_TEST, "Neuron dependencies are not available") | ||
class TestNeuronRollingBatch(unittest.TestCase): | ||
|
||
def test_models(self): | ||
# === Preparation === | ||
from djl_python.tests.neuron_test_scripts.neuron_rb_generator import NeuronRollingBatchGenerator, SimulationSchedule | ||
|
||
# --- Models --- | ||
model_names = [ | ||
"TinyLlama/TinyLlama-1.1B-Chat-v0.6", | ||
] | ||
|
||
# === Test === | ||
for model_id in model_names: | ||
properties = { | ||
"tensor_parallel_degree": 2, | ||
"n_positions": "128", | ||
"rolling_batch": "tnx", | ||
"max_rolling_batch_size": 4, | ||
"model_id": model_id | ||
} | ||
|
||
# ===================== neuron-tnx ============================ | ||
gen = NeuronRollingBatchGenerator() | ||
gen.init_neuron_service(properties) | ||
|
||
print('========== init inference ===========') | ||
input_str = [ | ||
"Hello, my name is", | ||
"The president of the United States is", | ||
"The capital of France is", | ||
"The future of AI is", | ||
] | ||
|
||
params = [{ | ||
"max_new_tokens": 100, | ||
"do_sample": False, | ||
}.copy() for _ in range(len(input_str))] | ||
|
||
test_input = SimulationSchedule(prompts=input_str, | ||
params=params, | ||
reqs_to_prefill=[1, 2, 1], | ||
wait_steps=[1, 4, 5]) | ||
|
||
gen.simulator(test_input) | ||
|
||
for i, out in enumerate(gen.responses): | ||
out_dict = json.loads(''.join(out)) | ||
out_str = out_dict["generated_text"] | ||
test_generation = input_str[i] + " " + out_str | ||
print(f"\n====req_id: {i}=====\n{test_generation}\n") | ||
if model_id in expected_text_30 and i in expected_text_30[ | ||
model_id]: | ||
expected_prefix_30_req_id = expected_text_30[model_id][i] | ||
assert expected_prefix_30_req_id == test_generation[:len( | ||
expected_prefix_30_req_id)] | ||
|
||
gen.reset() | ||
del gen | ||
import gc | ||
gc.collect() | ||
|
||
def test_tiny_models(self): | ||
# === Preparation === | ||
from djl_python.tests.neuron_test_scripts.neuron_rb_generator import NeuronRollingBatchGenerator, SimulationSchedule | ||
from djl_python.tests.neuron_test_scripts.tiny_models import artifacts | ||
os.environ["TOKENIZERS_PARALLELISM"] = "false" | ||
|
||
# --- Models --- | ||
model_names = [ | ||
"llama", | ||
"gpt2", | ||
"gptneox", | ||
"bloom", | ||
] | ||
|
||
# === Test === | ||
for model_id in model_names: | ||
properties = { | ||
"tensor_parallel_degree": 2, | ||
"n_positions": "128", | ||
"rolling_batch": "tnx", | ||
"max_rolling_batch_size": 4, | ||
"model_loading_timeout": 3600, | ||
"model_id": artifacts(model_id) | ||
} | ||
|
||
# ===================== neuron-tnx ============================ | ||
gen = NeuronRollingBatchGenerator() | ||
gen.init_neuron_service(properties) | ||
|
||
print('========== init inference ===========') | ||
input_str = [ | ||
"Hello, my name is", | ||
"The president of the United States is", | ||
"The capital of France is", | ||
"The future of AI is", | ||
] | ||
|
||
params = [{ | ||
"max_new_tokens": 100, | ||
"do_sample": False, | ||
"ignore_eos": True, | ||
}.copy() for _ in range(len(input_str))] | ||
|
||
test_input = SimulationSchedule(prompts=input_str, | ||
params=params, | ||
reqs_to_prefill=[1, 2, 1], | ||
wait_steps=[1, 4, 5]) | ||
|
||
gen.simulator(test_input) | ||
gen.reset() | ||
del gen | ||
import gc | ||
gc.collect() | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |
Oops, something went wrong.