forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add mnasnet; add save embedding only option
- Loading branch information
Showing
3 changed files
with
181 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
import sys | ||
import os | ||
import mxnet as mx | ||
import mxnet.ndarray as nd | ||
import mxnet.gluon as gluon | ||
import mxnet.gluon.nn as nn | ||
import mxnet.autograd as ag | ||
import symbol_utils | ||
sys.path.append(os.path.join(os.path.dirname(__file__), '..')) | ||
from config import config | ||
|
||
def ConvBlock(channels, kernel_size, strides, **kwargs): | ||
out = nn.HybridSequential(**kwargs) | ||
with out.name_scope(): | ||
out.add( | ||
nn.Conv2D(channels, kernel_size, strides=strides, padding=1, use_bias=False), | ||
nn.BatchNorm(scale=True), | ||
nn.Activation('relu') | ||
) | ||
return out | ||
|
||
def Conv1x1(channels, is_linear=False, **kwargs): | ||
out = nn.HybridSequential(**kwargs) | ||
with out.name_scope(): | ||
out.add( | ||
nn.Conv2D(channels, 1, padding=0, use_bias=False), | ||
nn.BatchNorm(scale=True) | ||
) | ||
if not is_linear: | ||
out.add(nn.Activation('relu')) | ||
return out | ||
|
||
def DWise(channels, strides, kernel_size=3, **kwargs): | ||
out = nn.HybridSequential(**kwargs) | ||
with out.name_scope(): | ||
out.add( | ||
nn.Conv2D(channels, kernel_size, strides=strides, padding=kernel_size // 2, groups=channels, use_bias=False), | ||
nn.BatchNorm(scale=True), | ||
nn.Activation('relu') | ||
) | ||
return out | ||
|
||
class SepCONV(nn.HybridBlock): | ||
def __init__(self, inp, output, kernel_size, depth_multiplier=1, with_bn=True, **kwargs): | ||
super(SepCONV, self).__init__(**kwargs) | ||
with self.name_scope(): | ||
self.net = nn.HybridSequential() | ||
cn = int(inp*depth_multiplier) | ||
|
||
if output is None: | ||
self.net.add( | ||
nn.Conv2D(in_channels=inp, channels=cn, groups=inp, kernel_size=kernel_size, strides=(1,1), padding=kernel_size // 2 | ||
, use_bias=not with_bn) | ||
) | ||
else: | ||
self.net.add( | ||
nn.Conv2D(in_channels=inp, channels=cn, groups=inp, kernel_size=kernel_size, strides=(1,1), padding=kernel_size // 2 | ||
, use_bias=False), | ||
nn.BatchNorm(), | ||
nn.Activation('relu'), | ||
nn.Conv2D(in_channels=cn, channels=output, kernel_size=(1,1), strides=(1,1) | ||
, use_bias=not with_bn) | ||
) | ||
|
||
self.with_bn = with_bn | ||
self.act = nn.Activation('relu') | ||
if with_bn: | ||
self.bn = nn.BatchNorm() | ||
def hybrid_forward(self, F ,x): | ||
x = self.net(x) | ||
if self.with_bn: | ||
x = self.bn(x) | ||
if self.act is not None: | ||
x = self.act(x) | ||
return x | ||
|
||
class ExpandedConv(nn.HybridBlock): | ||
def __init__(self, inp, oup, t, strides, kernel=3, same_shape=True, **kwargs): | ||
super(ExpandedConv, self).__init__(**kwargs) | ||
|
||
self.same_shape = same_shape | ||
self.strides = strides | ||
with self.name_scope(): | ||
self.bottleneck = nn.HybridSequential() | ||
self.bottleneck.add( | ||
Conv1x1(inp*t, prefix="expand_"), | ||
DWise(inp*t, self.strides, kernel, prefix="dwise_"), | ||
Conv1x1(oup, is_linear=True, prefix="linear_") | ||
) | ||
def hybrid_forward(self, F, x): | ||
out = self.bottleneck(x) | ||
if self.strides == 1 and self.same_shape: | ||
out = F.elemwise_add(out, x) | ||
return out | ||
|
||
def ExpandedConvSequence(t, k, inp, oup, repeats, first_strides, **kwargs): | ||
seq = nn.HybridSequential(**kwargs) | ||
with seq.name_scope(): | ||
seq.add(ExpandedConv(inp, oup, t, first_strides, k, same_shape=False)) | ||
curr_inp = oup | ||
for i in range(1, repeats): | ||
seq.add(ExpandedConv(curr_inp, oup, t, 1)) | ||
curr_inp = oup | ||
return seq | ||
|
||
class MNasNet(nn.HybridBlock): | ||
def __init__(self, m=1.0, **kwargs): | ||
super(MNasNet, self).__init__(**kwargs) | ||
|
||
m = config.net_multiplier | ||
self.first_oup = int(32*m) | ||
#self.second_oup = int(16*m) | ||
self.second_oup = int(32*m) | ||
self.interverted_residual_setting = [ | ||
# t, c, n, s, k | ||
[3, int(24*m), 3, 2, 3, "stage2_"], # -> 56x56 | ||
[3, int(40*m), 3, 2, 5, "stage3_"], # -> 28x28 | ||
[6, int(80*m), 3, 2, 5, "stage4_1_"], # -> 14x14 | ||
[6, int(96*m), 2, 1, 3, "stage4_2_"], # -> 14x14 | ||
[6, int(192*m), 4, 2, 5, "stage5_1_"], # -> 7x7 | ||
[6, int(320*m), 1, 1, 3, "stage5_2_"], # -> 7x7 | ||
] | ||
self.last_channels = int(1024*m) | ||
|
||
with self.name_scope(): | ||
self.features = nn.HybridSequential() | ||
self.features.add(ConvBlock(self.first_oup, 3, 1, prefix="stage1_conv0_")) | ||
self.features.add(SepCONV(self.first_oup, self.second_oup, 3, prefix="stage1_sepconv0_")) | ||
inp = self.second_oup | ||
for i, (t, c, n, s, k, prefix) in enumerate(self.interverted_residual_setting): | ||
oup = c | ||
self.features.add(ExpandedConvSequence(t, k, inp, oup, n, s, prefix=prefix)) | ||
inp = oup | ||
|
||
self.features.add(Conv1x1(self.last_channels, prefix="stage5_3_")) | ||
#self.features.add(nn.GlobalAvgPool2D()) | ||
#self.features.add(nn.Flatten()) | ||
#self.output = nn.Dense(num_classes) | ||
def hybrid_forward(self, F, x): | ||
x = self.features(x) | ||
#x = self.output(x) | ||
return x | ||
|
||
def num_output_channel(self): | ||
return self.last_channels | ||
|
||
def get_symbol(): | ||
net = MNasNet(config.net_multiplier) | ||
data = mx.sym.Variable(name='data') | ||
data = data-127.5 | ||
data = data*0.0078125 | ||
body = net(data) | ||
fc1 = symbol_utils.get_fc1(body, config.emb_size, config.net_output, input_channel=net.num_output_channel()) | ||
return fc1 | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters