Skip to content

A system for CCKS2019-CKBQA, whose single system reach 0.69 and ensemble system reach 0.73

Notifications You must be signed in to change notification settings

deep-cognition/CCKS2019-CKBQA

 
 

Repository files navigation

CCKS2019-CKBQA

A system for CCKS2019-CKBQA

具体方法参考文章《中文知识库问答中的路径选择》:http://jcip.cipsc.org.cn/CN/abstract/abstract3196.shtml

知识库链接(BaiduNetDisk):链接: https://pan.baidu.com/s/1XSH-kkzGZa49uE9oFY-GpQ 提取码: 7e5z

Dependency

python 3
pytorch==3.5
pytorch-pretrained-bert==0.4

知识库导入

  1. mysql安装

mysql安装 参考网址:https://blog.csdn.net/tianpy5/article/details/79842888

允许远程访问设置:https://blog.csdn.net/h985161183/article/details/82218710

pymysqlpool安装参考网址:https://www.cnblogs.com/z-x-y/p/9481908.html

pymsql安装:pip install PyMysqlPool

  1. 知识库导入数据库

    follow KB/kb_processing.ipydb to create database

    useful instruction:

    查看总体数据库信息:show databases;

    创建数据库:create database ccks;

    选择要使用的数据库:use ccks;

    查看该数据库下的表的信息:show tables;

    查看表中数据个数:select count(*) from pkubase;

    查看表中最后6条数据:select * from pkubase order by id desc limit 0,6;

    查看当前使用的数据库名字:select database();

    查看表结构:desc pkuprop;

    sql创建表时的varchar(num)中的num表示字符个数而不是字节个数。

    更改密码:update mysql.user set authentication_string=password('yhjia') where user='root';

预处理

  1. dataset

    mkdir data

You can download train/dev/test from https://github.com/pkumod/CKBQA and put them into data/

  1. preprocecss

    Preprocess.ipynb

对原始数据集(train/dev/test)进行预处理,生成 NER/data/train_bert_ner_input.txt、valid_bert_ner_input.txt和test_bert_ner_input.txt文件用于对下一步NER模型的训练。

NER

  1. 实体识别

    cd NER

    mkdir snapshot

    sh ccks_run.sh

训练阶段将ccks_bert.cfg中的status字段改为train, 预测阶段改为tag。 生成的NER模型保存在snapshot/modelbest.pkl。

  1. 利用知识库匹配分词

    python ws.py

生成的分词文件在data/questions_ws.txt

第一行是问句,第二行是正向最大匹配(知识库中的别名作为词表)的结果,第三行是实体匹配(知识库中的别名作为词表)的结果。

  1. 利用知识库进行优化,并进行实体链接

    运行实体识别的优化与实体链接.ipynb 生成data/test_er_out.json:用途 生成data/test_er_out_baike.json:用途 生成data/test_el_baike_top10.json:用途

语义相似度模型训练

生成训练数据

cd PreScreen/preprocess/

运行data.ipynb
生成../../data/train.json和valid.json:实体链接模型的训练和验证数据

训练

cd PathRanking/model/

mkdir saved_sharebert_negfix

sh train.sh
生成的实体链接模型存放在saved_sharebert_negfix/pytorch_model.bin

问句分类模型训练

cd Question_classification/BERT_LSTM_word
sh run.sh

预测部分

方法1:基于问句分类的方法

本方法先对问句进行分类,再检索当前类别的路径,最后经过语义相似度匹配模型 问句类型

问句分类

to do

方法2:基于集束搜索的方法

本方法基于路径跳数不大于2的假设,每一跳会保留topk个最优的当前路径

预测部分(to do 文件夹结构比较混乱,待优化)

已经训练好了语义相似度匹配模型

step1:搜索一跳路径

cd PreScreen/data/
python onehop_path.py
生成./one_hop_paths.json

step2:预测topk一跳路径

mkdir /PreScreen/data/merge

cd PathRanking/model/

sh predict_stage1.sh
生成PreScreen/data/merge/one_hop_predict_path.json:用途

step3:搜索两跳路径

cd PathRanking/model/
sh search_path_stage2.sh
生成PreScreen/data/merge/mix_paths.json:用途
生成PreScreen/data/merge/mix_paths_all.json:用途

step4:预测一跳两条混合的所有路径中的topk

cd PathRanking/model/

sh predict_stage2.sh 注:把此处的输入文件paths_all_merge.json更名为上一步search_path_stage2.sh生成的mix_paths_all_merge.json
生成PreScreen/data/merge/mix_predict_path.json

step5:检索最后的答案

cd PreScreen/data/
sh search_ans.sh
生成PreScreen/data/merge/mix_answer.json:用途

step6:检验预测结果

# 注意修改答案文件路径
evaluation_answer.ipynb    

结果

Average F1:

avatar

About

A system for CCKS2019-CKBQA, whose single system reach 0.69 and ensemble system reach 0.73

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 79.5%
  • Python 20.4%
  • Shell 0.1%