A Tensorflow2.0 implementation of YOLOv3
- Download yolov3.weights and darknet53.conv.74 from YOLO website.
- Download COCO dataset
- Modify the dataset root and weights root in the config file
python main_coco.py --resume load_yolov3 --do_test --net_size 608 --batch_size 8
- run the following command to start training
python main_voc.py/main_coco.py --resume load_darknet --net_size 480 --batch_size 8
- The ckpt file will be stored in the ./checkpoints/dummy_name named with epoch number and use --resume xyz to resume from the xyz epoch
The Tensorboard is origanized like TF-ObjectDection-API
Model | Initial weight | basic resolution | VOC2007 Test(mAP) |
---|---|---|---|
YoloV3 | Darknet53 | 512 | 0.7796 |
- Data agumentation
- Multi-scale Training
- Multi-scale Testing(including flip)
- Focal loss
- ....
- Update VOC performance
- Update COCO performance
- Support distribute training
- Support Custom dataset