Translate to: 简体中文
Batch convert videos to text using OpenAI's Whisper or the local coreML whisper.cpp.
The tiktok-whisper tool allows batch conversion of videos to text using either OpenAI's cloud-based Whisper API or local coreML's Whisper.cpp. It includes features such as exporting copies to Excel, saving conversion results to SQLite or PostgreSQL, video duration statistics, and keyword search to locate videos. It addresses the original whisper's limitations by offering solutions for macOS compatibility and speed enhancement.
- Input Xiaoyuzhou podcast links for batch audio downloading
- Batch recognize audio or video, outputting text with timestamps
- Save recognition results to SQLite or PostgreSQL
- Use whisper_cpp + coreML for local transcription on macOS
- Export historical recognition results
Tiktok-whipser is based on two whisper engines: local whisper_cpp and remote openai whisper API.
For local conversion using coreML on macOS, you need to modify binaryPath
and modelPath
direct to your local whisper_cpp.
If you have an API KEY, you can use OpenAI's cloud API for conversion; skip step 1,2,3 to step 4 for compilation.
- Generate coreML's model:
mkdir -p ~/workspace/cpp/ && cd ~/workspace/cpp/
git clone git@github.com:ggerganov/whisper.cpp.git
cd whisper.cpp
bash ./models/download-ggml-model.sh large
conda create -n whisper-cpp python=3.10 -y
conda activate whisper-cpp
pip install -U ane_transformers openai-whisper coremltools
bash ./models/generate-coreml-model.sh large
make clean
WHISPER_COREML=1 make -j
- for using local whisper_cpp, you should modify the binaryPath and modelPath in
tiktok-whisper/internal/app/wire.go
manually.
func provideLocalTranscriber() api.Transcriber {
// Modify binaryPath and modelPath to your paths here!
binaryPath := "~/workspace/cpp/whisper.cpp/main"
modelPath := "~/workspace/cpp/whisper.cpp/models/ggml-large-v2.bin"
return whisper_cpp.NewLocalTranscriber(binaryPath, modelPath)
}
- Generate wire configuration and compile the executable:
cd ./internal/app
go install github.com/google/wire/cmd/wire@latest
wire
- Compile tiktok-whisper with CGO_ENABLED
cd tiktok-whisper
CGO_ENABLED=1 go build -o v2t ./cmd/v2t/main.go
./v2t help
The procedure is similar to macOS.
cd tiktok-whisper
go build -o v2t.exe .\cmd\v2t\main.go
.\v2t.exe help
# Download Xiaoyuzhou audio using a single episode URL
./v2t download xiaoyuzhou -e "https://www.xiaoyuzhoufm.com/episode/6398c6ae3a2b7eba5ceb462f"
# Or using multiple episode URLs
./v2t download xiaoyuzhou -e "https://www.xiaoyuzhoufm.com/episode/6398c6ae3a2b7eba5ceb462f,https://www.xiaoyuzhoufm.com/episode/6445559d420fc63f0b9e5747"
# Download all episodes from a Xiaoyuzhou podcast URL
./v2t download xiaoyuzhou -p "https://www.xiaoyuzhoufm.com/podcast/61e389402454b42a2b06177c"
After downloading, you can find the files in the data directory:
$ tree data/
data/
└── xiaoyuzhou
└── 硬地骇客
└── EP21 程序员的职场晋升究竟与什么有关?漂亮的代码?.mp3
To download only audio without video, use the following command:
yt-dlp --extract-audio --audio-format mp3 "https://www.youtube.com/watch?v=tWmNN87VvcE"
On macOS, you can use whisper.cpp for audio conversion, ensuring the correct setup of binaryPath
and modelPath
in wire.go
:
# Convert an
audio file
./v2t convert -audio --input ./test/data/test.mp3
# Convert all files in a directory with a specified file extension
./v2t convert -audio --directory ./test/data --type m4a
# Convert all mp4 files in a specified directory to text, -n specifies the maximum number of files to convert, default n=1
./v2t convert --video --directory "./test/data/mp4" --userNickname "testUser" -n 100
# Export all recognition history of a specified user as excel
./v2t export --userNickname "testUser" --outputFilePath ./data/testUser.xlsx
To use OpenAI's API KEY for audio conversion, ensure OPENAI_API_KEY
is set correctly in your environment variables and modify wire.go
to use provideRemoteTranscriber
:
func InitializeConverter() *converter.Converter {
- wire.Build(converter.NewConverter, provideLocalTranscriber, provideTranscriptionDAO)
+ wire.Build(converter.NewConverter, provideRemoteTranscriber, provideTranscriptionDAO)
return &converter.Converter{}
}
If you are on Windows and have a dedicated GPU, you can use Python's faster-whisper for CUDA processing. There are two Python scripts for batch audio transcription:
whisperToText.py
: Transcribes a single file or all files in a single directory.whisperToTextParallel.py
: Transcribes files in multiple subdirectories in parallel.
Before running the scripts, install the required Python packages:
pip install -r requirements.txt
For single file or directory transcription, and parallel transcription of multiple subdirectories, follow the provided commands in the documentation.
- Video duration statistics
- Keyword search to locate videos
- Original video jump link
- Like, share, and comment statistics
- Use pgvector for vectorized search